Products Design Problem-Material and Structures-Assignment, Exercises for Material and Structures. Andhra University

Material and Structures

Description: This is assignment for Material and Structures course. To cover following points, Prof. Aparijita Singh assigned this task at Andhra University to engineering students: Products, Design, Trusses, Metallic, Frames, Construction, Pitch, Galvanized, Joining, Plates, Building, Code, Collapse, Deflection, Concentrated, Loads
Showing pages  1  -  4  of  4
16.20 Handed Out: Lecture 11
Due: Lecture 17
Your team has been contracted by TrussProd, Inc. to make
recommendations to them on a quality control test procedure for their new line
of trusses. TrussProd originally entered the construction market by producing
metallic frames and trusses for industrial construction. They have recently
expanded their factory and will be entering the private home market with their
new line of trusses for private homes.
Initially they will have two products of the same basic design and total
length (of 25 ft). The difference is in the pitch of the two cases: one being for a
45° roof and the other for a 30° roof. The basic design is shown in the
accompanying figure with the pitch angle indicated by θ. The individual
members of the truss are dried pine two-by-sixes and they are joined using
galvanized joining plates with a specialized attachment device which is one of
the trade secrets which has helped TrussProd become a success to date in the
industrial construction market. Although they have patented the procedure,
they are still generally unwilling to discuss its implementation in detail and have
not provided any details about this to you.
The engineers at TrussProd have researched building codes extensively
and have found that the building code of the City of Metropolis is the most
conservative. They have therefore decided to design their product to fulfill that
code. There are a number of different items that must be fulfilled, but you are
asked to consider only the static loads. The pertinent part of the building code is
as follows:
Building Code, City of Metropolis, Section 804.1 (b): "The truss shall sustain,
without collapse and with a deflection of the center point of less than S/360
(where S=span), its own weight, plus a superimposed test load equal to 50% of
its weight plus 150% of the dead load to be added at the site, plus 250% of the
design live load".
The engineers at TrussProd have indicated to you that the "dead load added at
the site" consists of the roofing material and is typically in the ballpark of 7 lb/ft2
although in cases where the best construction materials and procedures are used,
these loads can reach 20 lb/ft2. The "live loads" consist of a number of items
which the roof will see in use and are defined in the building code:
Building Code, City of Metropolis, Ch. 7:
16.20 Design Problem #2 Page 2
Fall, 2002
• Roof live loads are the concentrated loads (to account for people, etc.), snow
loads, and wind loads.
• Concentrated loads = 20 lb/ft2
• Snow loads = (34-2r) lb/(ft2 of horizontal projection) for 2 < r < 12
10 lb/(ft2 of horizontal projection) for r > 12
where r = rise (inches) per foot of run
• Wind loads: design to pressure of 0.4P for slope < 30°
design to pressure of 0.9P for slope > 30°
where P = 20 lb/ft2
The engineers have also provided a sketch to help describe many of the terms
utilized here. They have also pointed out that, by code, roof trusses are
supported 6 inches inboard of the end point to allow room for placement of the
soffit boards/panels in the eaves. The basic manner in which the trusses are
attached to the structure below can best be modeled by a simple support.
Finally, the building code indicates that the maximum allowable spacing
between trusses is 30 inches.
The factory will initially have two production lines, one for the 45° truss
product (known as TrussProd 25-45), and one for the 30° truss product (known
as TrussProd 25-30). Each production line will produce one truss every two
minutes. Product 25-45 will each weigh 200 lb., while product 25-30 will each
weigh 160 lb. The company is planning to expand its production capability by
adding additional production lines in a planned new factory building if initial
demand for their new product warrants such a move.
The company wishes to check product quality by testing units as they
come off the production line. Your job is to design the test method to insure the
quality, defined as meeting the pertinent parts of the Building Code noted in this
write-up. You need to consider and discuss such items as how often a unit will
be tested (each unit, every second, every fifth, every tenth, ...); the general
description of the test set-up including placement of loads, the boundary
conditions, and suggested mechanical units for such; the expected time to set-up
a test (and the associated number of testing stations at the end of the line); as
well as the tradeoffs between the various items. Although quality control is the
issue, the company is interested in minimizing cost over the long run (purchase
of equipment, labor, etc.).
How and What...
Present your results in an engineering report. The report can be as long as
you feel necessary (I would say that more than 5 single-spaced pages of text is probably
getting to be a bit too long. But please submit this double-spaced to make commenting
and correcting easier). The report should provide the proposed solution, the
16.20 Design Problem #2 Page 3
Fall, 2002
reasoning behind it, and should be subdivided into sections as necessary
(Possible sections include: executive summary, introduction, problem statement,
assumptions, methodology, results, conclusions and recommendations, options,
limitations, additional considerations). The reasoning should be supported by
appropriate calculations. Any lengthy calculations should be contained in an
appendix. Figures and tables should be used if appropriate. In addition to the
engineering report, a covering business letter to the VP of Engineering, Dr. I. M.
Atruss, should be sent. He is the official contracting point. The letter merely
conveys the actual document and deals with "pleasantries of business" (billing is
generally provided under separate cover). No recommendation or discussion of
technical matters are contained within.
16.20 Design Problem #2 Page 4
Fall, 2002
DRAWING 2” dimension of 2x6 is out-of-
plane of drawing
6 6
Notes: Configuration drawn for θ = 45° (TrussProd 25-45)
Individual members -- dried pine 2x6’s
Standard galvanized steel joining plates with patented TrussProd
attachment technique
snow load,
concentrated load
6” or
basic truss
more support support
The preview of this document ends here! Please or to read the full document or to download it.
Document information
Embed this document:
Docsity is not optimized for the browser you're using. In order to have a better experience please switch to Google Chrome, Firefox, Internet Explorer 9+ or Safari! Download Google Chrome