Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Computer aided design (CAD) with Aspen Plus Part 2: Vapor–Liquid Equilibrium Calculations, Slides of Computer Aided Design (CAD)

Part 2: Vapor–Liquid Equilibrium Calculations Using an Equation of State

Typology: Slides

2023/2024

Uploaded on 03/26/2024

javad-ahmadpour
javad-ahmadpour 🇮🇷

4 documents

1 / 51

Related documents


Partial preview of the text

Download Computer aided design (CAD) with Aspen Plus Part 2: Vapor–Liquid Equilibrium Calculations and more Slides Computer Aided Design (CAD) in PDF only on Docsity! Dr. Javad Ahmadpour Babol Noshirvani University of Technology Computer aided design (CAD) with Aspen Plus Part 2: Vapor–Liquid Equilibrium Calculations Using an Equation of State Liquid-Liquid Equilibria in Aspen Plus® V9 Home Wiew Customize Resources Search aspenONE Exchange [PCS METCHEM ~| [#f Setup Nat Chemistry Methods Assistant (RE NIST ch > A be py | $2 Unit Sets @ Components Jf Customize @p Clean Parameters © @)DECHEMA Jp Estimation A Paste Methods PropSets Structure y Retrieve Parameters Lf Regression oun Suey orale Clipboard Units Navigate Tools DataSource Run Mode Properties < _ “Methods - Specifications » | + All Items =)|| | @Globat | Fiowsheet Sections | Referenced | Comments > [@ Setup cS > By Components - Property methods & options Method name 4 [& Methods Sa COMMON ~ | untauac ~ [Methods Assista fal Specifications Base method UNIQUAC ~ p Og Selected Methods Henry components ~ | (J Modify b Parameters = \ fear -Petroleum calculation options (parle este a ZINC Props Free-water method STEAM-TA ~| ||] Dataset ¥ 55 Tabpoly Watersolubility 3 ~ || | Liquid gamma GMUQUAC ed a (Gi Chemistry Data set z b Bg Property Sets een ee cere Liquid molar enthalpy | HLMX88 (ai Data percent, ~ || | Liquid molarvolurne | VLMXO1 b> (i Estimation . Use true components = Heat of mixing Poynting correction Simulati Use liquid reference state enthalpy {5 Simulation fed safety Analysis 9 Energy Analysis Required Properties Input Complete | Check Status 10% © U ® Sr; Input the data (Txx) provided in the table as shown below Input the data (Txx) provided in the table as shown below File Home View Customize Resources % Cut METCHEM ~| [Setup Nat Chemistry Ge Methods Assistant JRE NIST [Zp Analysis N> > Iq 5] Input 23 Copy | 2 Unit Sets @® Components [¥ Customize @9 Clean Parameters | @)DECHEMA | Gj Estimation LE \e] History Draw Next Run Reset Control A, Paste & Methods Prop Sets | Structure 4 Retrieve Parameters Ly Panel | {J Report Clipboard Units Navigate Tools DataSource | Run Mode Run ta | Summary Properties ‘ BINRY-1 (BINARY) - Input = | Control Panel « | DR-1- Input ~ “DR-1- Results» | + All Iterns . | Porameters | con ‘tency Tests | Residual | Profiles | Correlation | Sum of Squares | Evaluation | Extra Property | @Status ‘4 og Data 5 fp -Regressed parameters > [al Estimation Parameter Componenti Component j Value (SI units) Standard deviation 4 (i@ Regression >» UNION N-MET-O1 IN-HEX-01 0.396565 0,0198035 4 BOR-1 UNIO/1 N-HEX-01 N-MET-01 3.42668 3.12743 [input UNIO/2 N-MET-O1 NN-HEX-01 -113,691 0 Results uNIay2 N-HEX-01 N-MET-01 - 2033.5 955.461 4 [Analysis 4 (BG BINRY-1 J Input J b> DQ Customize J 4 [2G Results FA Ru . zi , {5 Simulation Aq) Safety Analysis DRS converged in 7 iterations Energy Analysis 69 Energy Analysis Property method — UNIQUAC (UNIQUAC / IDEAL GAS) CS Home View Customize Resources Search aspenONE Exchange Cut | |METCHEM ~| [2 Setup Nat Chemistry @ BP Methods Assistant RE NIST [eh Analysis N> > KX [input Pp : D Ay Ternary Diag 2 Copy 42 Unit Sets @ Components JY Customize Clean Parameters @)DECHEMA fp Estimation {é] History Residue Curves raw Net Run Reset Control “A, Paste Methods Gi} Prop Sets | Structure ‘#3 Retrieve Parameters Panel (J Report (4, Mixture (| PT Envelope Clipboard Units Navigate Tools DataSource | Run Mode Run 5 | Summary Analysis Properties < _~ BINRY-1 (BINARY) - Input | Control Panel = | DR-1- Input » Binary Interaction - UNIQ-1 (T-DEPENDENT) = | + Binary Analysis All Items : | @input | @Databanks | Comments Generate Try, Pxy, or Gibbs free Dy Meth 4 energy of mixing curves fora binary 4 ods . system. > [Selected Methods ~Temperature-dependent binary parameters 4 BB Parameters = (i Pure Components @ N-MET-01 4 [Binary interaction omponent | " (Glanoku-1 Component j N-HEX-01 Gjanpmu-1 Temperature units | C (Gprusr2-1 a 8 R-DR4 (lHenry-1 ource (a voK-1 Property units G)aurt-1 Au 0.296565 Gy] MULU-1 a All 3.42668 [GURKTKUA1 Sune BU 113.691 (Gi Electrolyte Pair > BJ -2033.5 ‘Gn cu 0 a ° - Control Panel BINRY-3 (BINARY) - Input » | + @Binary Analysis Analysistype [a ~ @ Calculation Options | Diagnostics | Results | Comments | Status | -Pseudo-Binary - Components Component N-MET-01 ~~ () Pseudo-binary system Component 2 N-HEX-01 7 Entrainer Entrainer fraction - Compositions ~ Pressure Basis Mole fraction a Units bar + Vary N-MET-01 ~ © Equidistant @) List of values @ Equidistant ©) Logarithmic © List of values Enter Values Start point 0 1.01325 End point 1 ‘© Number of intervals 50'¢ © Increment 0.02 Methanol(1) + Water (2) - Use the Peng-Robinson (PR) equation of state to model the VLE behavior of a binary mixture containing methanol and water at 313.03 K in Aspen Plus: a. Property analysis method (Pxy diagram) b. Simulation method: find dew point of equimolar mixture c. Estimate the binary parameter for the PR equation of state by performing a regression on data retrieved from the Aspen databases. Generate a Pxy diagram. • Open Aspen Plus® and add the components methanol (1) – water (2) • Select PENG-ROB as the method to model the system roperty Analysis: tabulated resu Ss. WRG) ome View Customize Resources Search espenONe Exchange Bo es cut |MeTcaaR + [B’Setup Naf Chemistry Be Methods Assistant JRE NIST |b. Analysis Dj tnput Latony Funtses — Bcomponens Hewtomee cemnraometes | BoLIUMA SpLstinston Bio Hs Paste AMethods GB Prop Sets structure} Retrieve Parameters dh Regression © Report . ‘ 2) curve Clipboard Navigate Tons Data Source Run Morin un 5 Summary Plot Properties «¢ _ BINRY-4 (BINARY) - Results « | + = All terms = | [results [@sratus | > Penney Sets : 4 By Data ume MOLURAG —|OIALPRLS—TOIALRYL——IUIALKYL_— LIQUID GAMMA, LIOUID GANMA——VAPOR WAPOR woul uray fp METHA-O7 NETHA-O1 WATER METHA-O1 WATER MOLEFRAC — MOLEFRAC = MOLEFRAC = MCILEF > Bm Estinnation MLIAOT WAIL’ MLUNa-Ut wail 4 BAnalysis te bar - Dy RINRY-1 3988 0333333 0195497 228128 359358 1.29156 12889 0.760428 0.239572 0333333 0668557 Swe 33a osszoa «0198737 —=«h1a035 = a386173 «= 1.26105 «= a306 «== 780535 wzRMHES © aaszaa © 6ar059 4 Eg einay 4 39.83 ag7esag 0203074 2.08092 0380454 4.23308 4.15775 0.776225 0.221775 ag72sa 0627451 Dope 39.83 0392187 9207931 2.00577 osstt16 4.20745 1.1729 0.786575 ozia4e4 0392187 9607843 » omen 5 3988 oatt768 o21193 1.92988 assso8e 118399 18eer 0794055 0.205345 oatt768 0588233 |" ba haculs _ 398 0431373 0215839 7.36038 03473 1.16256 1.20839 oscas"s 0.97484 0431373 ose3628 2388 uasees ozte2s 19668 4101 14agp2 1.222061 ogtczv4 vag979r uasees osagye 33.88 ua rosee ogescas 1i3i3 usaaza 142524 12aor owtsiss wBeeay ua ose osazate yaaa a.190186 apa saava osoeT 44991 12537 og25007 a.47aTaR a190186 os09a04 [5 Simulation 3A.88 0.509604 2617 1.63312 0841567 1.09448 170d G.830568 o18743? 509604 nagni96 2988 usevate ogassee 1.3843 uzauzes 108129 12ere og2ser> oaaprad usevate varopes fa safety Analysis 2388 useouz ozaab/9 a3 ozseese 1.09343 1.30391 ogarnay was2e63 useouz oasune 69 Energy Analysis 39.8 a.56678 1743816 1.5095 ost76n4 1.0588 1.3205 a.ns4y67 a145693 0.568628 oa . m Jo Results Available Check Status 100% © Ly Sr; • b. Simulation method. Create a Flash2 and enter the input information: temperature and vapor fraction. Make sure the mole fraction box under Setup>Report Options> Stream is checked • b. Simulation method. Enter input information about the feed stream and run simulation • c. Create new regression and set up input as shown below. Click run and check results eacoraccinn racil P-xy of METHA-O1 WATER @ Ep YD 1DR 1 (39.98 Shy tp GORE © Ep XD-1 DR (39860) = tstx 0-1 Rt DR-1- Results «| + {Parameters | Consistency Tests | Residual | Profiles | Regressed parameters p B& Property Seis relation | Sum of Squares | Evaluation | Extra Property | @Sta Camponent Value (SI units) Standard deviation WATFR on787 144 0.00936513 METHA-01 ooze2t4d 0.00936513 DR-1- Results © | [rorrnsar | Co Thermodynamic consistency test for binary VLE cata Data se Testimethod | Result Value -ot AREA basen — 2.4gas eC CS nog Tos [Besa [totes | Coveloion [Sum of suas Aspen Plus Flowsheet Features creating a simulation of the mixture of a feed stream of 100 kg/h of the 50-50 wt.% acetone–water mix with a solvent stream of 100 kg/h of MIBK. • The overall goal of this problem is to separate the feed stream into two streams that have greater than 95% purity of water and acetone, respectively. BINARY INTERACTIONS liquid phase: “NRTL, gas phase: ideal gas mixture. BINARY INTERACTIONS If the applied pressure is relatively high (e.g., above 10 bar), then the source of data can be changed from “APV88 VLE-IG” to a non-ideal gas mixture, such as “APV88 VLE-RK” (i.e., Redlich–Kwong equation of state). BINARY INTERACTIONS Both plots do exhibit the same pattern, except that they slightly differ in predicting the onset of azeotropic condition at higher values of acetone mole fraction In this example, pressure below 10 bar; no need to go to the non-ideal gas mixture. Simulation All items L@ Streams 4 (Qj H20+ACET fl Input Be Results ‘MVE Variables [2 Stream Results (Custo 4 GQMIBK [=] Input Tal Results AMEN Usrinblee - | nm » | Capital: ___USD Utilities: _USD/Year @) QD |) Energy Savings: __ tx | Control Panel x + (awa }-<> Bey safety Analysis < “ | Model Palette REGUREGINpURIREOMpIER | Check Status DATA INPUT Entering the first feed stream properties in terms of P, T, and compositional flow rate. DATA INPUT Entering the first feed stream properties in terms of P, T, and compositional flow rate. ® Required Input Complete x All required input is complete. You can run the simulation now, or enter more input. To enter more input, select Cancel, then select the input you want from the Simulation pane. Run the simulation now? Main Flowsheet Setup - Report Options » ” Control Panel » | + > > GH [ ClearMessages || Check Status || Run Settings || SetStop Points | << KUN Saved >> ->Processing input specifications Flowsheet Analysis COMPUTATION GRDER FOR THE FLOWSHEET: MIXER-1 ->Calculations begin ... Block: MIXER-1 Model: MIKER Show Sequence ->Simulation calculations completed *** No Warnings were issued during Input Translation *** *** No Errors or Warnings were issued during Simulation =** ->Generating results *) Show EO Contral eC CS ® Required Input Complete x All required input is complete. You can run the simulation now, or enter more input. To enter more input, select Cancel, then select the input you want from the Simulation pane. Run the simulation now? Main Flowsheet Setup - Report Options » ” Control Panel » | + > > GH [ ClearMessages || Check Status || Run Settings || SetStop Points | << KUN Saved >> ->Processing input specifications Flowsheet Analysis COMPUTATION GRDER FOR THE FLOWSHEET: MIXER-1 ->Calculations begin ... Block: MIXER-1 Model: MIKER Show Sequence ->Simulation calculations completed *** No Warnings were issued during Input Translation *** *** No Errors or Warnings were issued during Simulation =** ->Generating results *) Show EO Contral eC CS Simulation All Items > D& Setup > [& Property Sets > Dy Analysis > [& Flowsheet 4 [2 Streams > [@H20+ACeT > Ce MIBK > Oe TREMIX [ig Blocks (2 Utilities (@ Reactions [& Convergence ( Flowsheeting Options (Qi Model Analysis Tools (3g £0 Configuration (a (6% Results Summary Run Status [ei Streams [A Convergence Operating Costs [gj CO2 Emissions A Models Gl Equipment p B& Dynamic Configuration | Properties Jey Safety Analysis Main Flowsheet » | Setup - Report Options & | Control Panel, Results Summary - Streams (All) | -+ [ Material [Heat | Load | Work | Vol Curves | Wi %Curves | Petroleum | Polymers | Solids Units H2O+ACET = MIBK = TREMX = Molar Liquid Fraction 1 1 1 Molar Solid Fraction 0 0 0 Mass Vapor Fraction 0 0 0 Mass Liquid Fraction 1 1 1 Mass Salid Fraction 0 0 0 Molar Enthalpy keal/mel 66.501 -78.1367 -69,0076 Mass Enthalpy keal/eg -2418.18 -780.114 1599.15 Molar Entropy cal/mal-K 48.269 -146.609 -69303 Mass Entropy caligm-K -1,75521 -1.46374 -1.60599 Molar Density mol/cc 00318814 000795159 o.o1988s3 Mass Density kg/eum 876.753 796.437 258.02 Enthalpy Flow Gcal/nr 0241818 -0.0780114 0319829 Average MW 27.5005 100.161 43,1528 > 4 Mole Flows kmol/br 3.6363 0.998396 4.6347 + Mole Fractions 4 Mass Flows kg/hr 100 100 200 — Mass Fractions ACTONE 05 0 025 WATER 05 0 025 MIBK 0 1 05 Volume Flow cum/hr 0.114057 0.125559 0.233095 + Liquid Phase Sr; NIST/TDE EXPERIMENTAL DATA for acetone–water binary interaction parameters, some experimental data sets failed the consistency tests and others passed. Hence, one set of isobaric VLE data with an overall data quality equal to unity was selected for regression purposes. The data source is from [Huang, R., Gu, Y. and Hou, Y. (1984) VLE of acetone-water- isobutyraldehyde system. Chemical Engineering (China), 4, 26–29]. Properties « All Items 7 > O@ Setup ec > [@ Components 4 [3 Methods [G) Specifications > [@ Selected Methods 4 (6% Parameters (i Pure Components = 4 [2 Binary Interaction (SJ ANDRU-1 (S]anpmu-1 (S]prusr2-1 (S)HENRY-1 [@] MLOKU-1 (S] Muku-1 (S)Muww-1 [@] NRTL-1 [@] RKTKU-1 (@juNio-1 (@)witson-1 (Fi Electrolyte Pair (Gi Electrolyte Ternary (9 UNIFAC Groups (Gi UNIFAC Groups Bin > 2@ Results . TDE Binary Results ~ | DR-3- Results ~ | Control Panel » Binary Interaction - UNIQ-1 (T-DEPENDENT) » @input | @Databanks | Comments | Parameter UNIO Dataset 1 -Temperature-dependent binary parameters Component i ACTONE ACTONE WATER, Component j WATER MIBK MIBK Temperature units | C c c Source R-DR-3 APV90 VLE-IG APV90 VLE-IG Property units AU 8.27973 3.5694 -1.74573 Al -4.8338 “5.9419 2.59759 Bi -3021.4 -1041.14 45855 Bil 1612.2 1724.84 -1272.33 cu 0 0 o cll 0 0 0 Du 0 0 Q bul 0 0 a TLOWER 20 25 Q TUPPER 95.1 110.13 116 Eu 0 0 Q el 0 0 Q The mixer material and energy balance using “UNIQUAC” as the property method with NIST/TDE experimental data. THE CLEAN PARAMETERS STEP Regression by Property Constant EStimation (“R-PCES”) method Simulation Results Convergence  Reset the simulator back to the initial state (or point) via using the “Reset” button  The reset feature is useful when modifying an existing simulation in terms of input data, operating condition(s), and/or any constraint imposed on a given block.  The solver, may converge for all blocks except for a few (i.e., one or two) blocks, then the user’s duty is to keep changing specifications for that particular non-converging block until a converging and reasonable solution is reached.  Some factors that usually lead to convergence difficulties are a poor choice for the property method (i.e., thermodynamics) and the creation of recycle streams.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved