Higher Order Elements - Introduction to Finite Elements - Lecture Slides, Slides for Mathematical Methods for Numerical Analysis and Optimization. Shree Ram Swarup College of Engineering & Management
anuhya
anuhya7 May 2013

Higher Order Elements - Introduction to Finite Elements - Lecture Slides, Slides for Mathematical Methods for Numerical Analysis and Optimization. Shree Ram Swarup College of Engineering & Management

PDF (122 KB)
7 pages
1000+Number of visits
Description
The lecture slides of the Introduction to Finite Elements are very helpful and interesting the main points are:Higher Order Elements, Properties of Shape Functions, Triangular Elements, Area Coordinates, Lagrange Family...
20points
Download points needed to download
this document
Download the document
Preview3 pages / 7
This is only a preview
3 shown on 7 pages
Download the document
This is only a preview
3 shown on 7 pages
Download the document
This is only a preview
3 shown on 7 pages
Download the document
This is only a preview
3 shown on 7 pages
Download the document
Microsoft PowerPoint - HigherOrder

1

MANE 4240 & CIVL 4240 Introduction to Finite Elements

Higher order elements

Reading assignment:

Lecture notes

Summary:

• Properties of shape functions • Higher order elements in 1D • Higher order triangular elements (using area coordinates) • Higher order rectangular elements

Lagrange family Serendipity family

Recall that the finite element shape functions need to satisfy the following properties

1. Kronecker delta property

⎩ ⎨ ⎧ =

nodesotherallat inodeat

Ni 0 1

...2211 ++= uNuNu

Inside an element

At node 1, N1=1, N2=N3=…=0, hence

11 uu

node =

Facilitates the imposition of boundary conditions

2. Polynomial completeness

yyN

xxN

N

i i

i

i i

i

i i

=

=

=

∑ 1

yxuIf 321 ααα ++≈

Then

Docsity.com

2

Higher order elements in 1D

2-noded (linear) element:

1 2

x2x1

12

1 2

21

2 1

xx xx

N

xx xx

N

− −

=

− −

=

In “local” coordinate system (shifted to center of element)

1 2

x

a a a xaN

a xaN

2

2

2

1

+ =

− =

x

3-noded (quadratic) element:

1 2

x2x1

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2313

21 3

3212

31 2

3121

32 1

xxxx xxxxN

xxxx xxxx

N

xxxx xxxx

N

−− −−

=

−− −−

=

−− −−

=

In “local” coordinate system (shifted to center of element)

1 2

x

a a

( )

( )

2

22

3

22

21

2

2

a xaN

a xaxN

a xaxN

− =

+ =

− −=

3

x3 x

axxax ==−= 321 ;0;

3

4-noded (cubic) element:

1 2

x2x1

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )342414

321 4

432313

421 3

423212

431 2

413121

432 1

xxxxxx xxxxxx

N

xxxxxx xxxxxx

N

xxxxxx xxxxxx

N

xxxxxx xxxxxx

N

−−− −−−

=

−−− −−−

=

−−− −−−

=

−−− −−−

=

In “local” coordinate system (shifted to center of element)

1 2

2a/3 x

a a

)3/)(3/)(( 16

27

))(3/)(( 16

27

)3/)(3/)(( 16

9

)3/)(3/)(( 16

9

34

33

32

31

axaxax a

N

xaxaxa a

N

axaxax a

N

axaxax a

N

+−−−=

+−−=

+−+=

+−−−=

3

x3 x

x4

4

3 4

2a/32a/3

Polynomial completeness

4

3

2

1

x x x x 2 node; k=1; p=2

3 node; k=2; p=3 4 node; k=3; p=4

Convergence rate (displacement)

1; 0

+=≤− kpChuu ph

Recall that the convergence in displacements

k=order of complete polynomial

Docsity.com

3

Triangular elements

Area coordinates (L1, L2, L3) 1

A=A1+A2+A3Total area of the triangle

At any point P(x,y) inside the triangle, we define

A A

L

A A

L

A A

L

3 3

2 2

1 1

=

=

=

Note: Only 2 of the three area coordinates are independent, since

x

y

2

3

P A1

A2A3

L1+L2+L3=1

A ycxbaL iiii 2

++ =

12321312213

31213231132

23132123321

33

22

11

x1 x1 x1

det 2 1

xxcyybyxyxa xxcyybyxyxa xxcyybyxyxa

y y y

triangleofareaA

−=−=−= −=−=−= −=−=−=

⎥ ⎥ ⎥

⎢ ⎢ ⎢

⎡ ==

Check that

yyLyLyL xxLxLxL

LLL

=++ =++

=++

332211

332211

321 1

x

y

2

3

P A1

1 L1= constant

P’

Lines parallel to the base of the triangle are lines of constant ‘L’

Docsity.com

4

We will develop the shape functions of triangular elements in terms of the area coordinates

x

y

2

3

P A1

1

L1= 0

L1= 1

L2= 0

L2= 1L3= 0

L3= 1

For a 3-noded triangle

33

22

11

LN LN LN

= = =

x

y

2

3

1

L1= 0

L1= 1L2= 0

L2= 1

L3= 0 L3= 1

For a 6-noded triangle

L1= 1/2L2= 1/2

L3= 1/2

4

5

6

How to write down the expression for N1?

Realize the N1 must be zero along edge 2-3 (i.e., L1=0) and at nodes 4&6 (which lie on L1=1/2)

( )( )2/10 111 −−= LLcN Determine the constant ‘c’ from the condition that N1=1 at node 1 (i.e., L1=1)

( )( )

( )2/12 2

12/111)1(

111

11

−=∴ =⇒

=−==

LLN c

cLatN

Docsity.com

5

136

235

214

333

222

111

4 4 4

)2/1(2 )2/1(2

)2/1(2

LLN LLN LLN

LLN LLN

LLN

= = =

−= −= −=

x

y

2

3

1

L1= 0

L1= 1L2= 0

L2= 1

L3= 0 L3= 1

For a 10-noded triangle

L1= 2/3

L2= 2/3

L3= 1/3L3= 2/3

L2= 1/3 L1= 1/3

5

4

6 7

8 9

10

32110

3327

2326

2215

1214

3333

2222

1111

27 :

)3/1( 2

27

)3/1( 2

27

)3/1( 2

27

)3/1( 2

27

)3/2)(3/1( 2 9

)3/2)(3/1( 2 9

)3/2)(3/1( 2 9

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

=

−=

−=

−=

−=

−−=

−−=

−−= NOTES: 1. Polynomial completeness

3 node; k=1; p=2

6 node; k=2; p=3 10 node; k=3; p=4

Convergence rate (displacement)

3223

22

1

yxyyxx yxyx

yx

Docsity.com

6

2. Integration on triangular domain

)!1( !!.2

)!2( !!!2.1

2121 21

321

mk mkldSLL

nmk nmkAdALLL

edge

mk

A

nmk

++ =

+++ =

−−∫

∫1

x

y

2

3

l1-2

3. Computation of derivatives of shape functions: use chain rule

x L

L N

x L

L N

x L

L N

x N iiii

∂ ∂

∂ ∂ +

∂ ∂

∂ ∂ +

∂ ∂

∂ ∂ =

∂ ∂ 3

3

2

2

1

1

e.g.,

But A

b x L

A b

x L

A b

x L

2 ;

2 ;

2 332211 =

∂ ∂

= ∂ ∂

= ∂ ∂

e.g., for the 6-noded triangle

A bL

A bL

x N

LLN

2 4

2 4

4

1 2

2 1

4

214

+= ∂ ∂

=

Rectangular elements Lagrange family Serendipity family

Lagrange family

4-noded rectangle

x

y a a 12

3 4

b

b

In local coordinate system

ab ybxaN

ab ybxaN

ab ybxaN

ab ybxaN

4 ))((

4 ))((

4 ))((

4 ))((

4

3

2

1

−+ =

−− =

+− =

++ =

9-noded quadratic

x

y a a 12

3 4

b

b

Corner nodes

⎥⎦ ⎤

⎢⎣ ⎡ −−⎥⎦ ⎤

⎢⎣ ⎡ +=⎥⎦

⎤ ⎢⎣ ⎡ −−⎥⎦ ⎤

⎢⎣ ⎡ −−=

⎥⎦ ⎤

⎢⎣ ⎡ + ⎥⎦ ⎤

⎢⎣ ⎡ −−=⎥⎦

⎤ ⎢⎣ ⎡ + ⎥⎦ ⎤

⎢⎣ ⎡ +=

224223

222221

2 )(

2 )(

2 )(

2 )(

2 )(

2 )(

2 )(

2 )(

b yby

a xaxN

b yby

a xaxN

b yby

a xaxN

b yby

a xaxN5

6 7

89 Midside nodes

⎥ ⎦

⎤ ⎢ ⎣

⎡ − ⎥⎦ ⎤

⎢⎣ ⎡ +=⎥⎦

⎤ ⎢⎣ ⎡ −−⎥ ⎦

⎤ ⎢ ⎣

⎡ − =

⎥ ⎦

⎤ ⎢ ⎣

⎡ − ⎥⎦ ⎤

⎢⎣ ⎡ −−=⎥⎦

⎤ ⎢⎣ ⎡ + ⎥ ⎦

⎤ ⎢ ⎣

⎡ − =

2

22

2822

22

7

2

22

2622

22

5

2 )(

2 )(

2 )(

2 )(

b yb

a xaxN

b yby

a xaN

b yb

a xaxN

b yby

a xaN

Center node

⎥ ⎦

⎤ ⎢ ⎣

⎡ − ⎥ ⎦

⎤ ⎢ ⎣

⎡ − = 2

22

2

22

9 b yb

a xaN

Docsity.com

7

54322345

432234

3223

22

1

yxyyxyxyxx yxyyxyxx

yxyyxx yxyx

yx

NOTES: 1. Polynomial completeness

4 node; p=2

9 node; p=3

Convergence rate (displacement)

Lagrange shape functions contain higher order terms but miss out lower order terms

Serendipity family

Then go to the corner nodes. At each corner node, first assume a bilinear shape function as in a 4-noded element and then modify:

22 ˆ

4 ))((ˆ

85 11

1

NNNN

ab ybxaN

−−=

++ =

x

y a a 12

3 4

b

b

5

6 7

8

First generate the shape functions of the midside nodes as appropriate products of 1D shape functions, e.g.,

⎥ ⎦

⎤ ⎢ ⎣

⎡ − ⎥⎦ ⎤

⎢⎣ ⎡ +=⎥⎦

⎤ ⎢⎣ ⎡ + ⎥ ⎦

⎤ ⎢ ⎣

⎡ − = 2

22

82

22

5 2 )(;

2 )(

b yb

a xaN

b yb

a xaN

4-noded same as Lagrange

8-noded rectangle: how to generate the shape functions?

“bilinear” shape fn at node 1:

actual shape fn at node 1:

Corner nodes

224 ))((

224 ))((

224 ))((

224 ))((

78 4

76 3

65 2

85 1

NN ab

ybxaN NN

ab ybxaN

NN ab

ybxaN NN

ab ybxaN

−− −+

=−− −−

=

−− +−

=−− ++

=

x

y a a 12

3 4

b

b

5

6 7

8

Midside nodes

⎥ ⎦

⎤ ⎢ ⎣

⎡ − ⎥⎦ ⎤

⎢⎣ ⎡ +=⎥⎦

⎤ ⎢⎣ ⎡ − ⎥ ⎦

⎤ ⎢ ⎣

⎡ − =

⎥ ⎦

⎤ ⎢ ⎣

⎡ − ⎥⎦ ⎤

⎢⎣ ⎡ −=⎥⎦

⎤ ⎢⎣ ⎡ + ⎥ ⎦

⎤ ⎢ ⎣

⎡ − =

2

22

82

22

7

2

22

62

22

5

2 )(

2 )(

2 )(

2 )(

b yb

a xaN

b yb

a xaN

b yb

a xaN

b yb

a xaN

8-noded rectangle

54322345

432234

3223

22

1

yxyyxyxyxx yxyyxyxx

yxyyxx yxyx

yx

NOTES: 1. Polynomial completeness

4 node; p=2

8 node; p=3

Convergence rate (displacement)

12 node; p=4

16 node; p=4

More even distribution of polynomial terms than Lagrange shape functions but ‘p’ cannot exceed 4!

Docsity.com

comments (0)
no comments were posted
be the one to write the first!
This is only a preview
3 shown on 7 pages
Download the document