Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Divisibilidad de algoritmo - Apuntes - Matemática discreta, Apuntes de Matemática Discreta

Apuntes del curso universitario de Matemática discreta sobre la Divisibilidad del Algoritmo - Estableceremos en este apartado el algoritmo de la divisi´on de dos n´umeros, viendo que el cociente y el resto de la divisi´on son ´unicos.

Tipo: Apuntes

2012/2013

Subido el 29/04/2013

Alejandro_87
Alejandro_87 🇦🇷

4.4

(292)

402 documentos

Vista previa parcial del texto

¡Descarga Divisibilidad de algoritmo - Apuntes - Matemática discreta y más Apuntes en PDF de Matemática Discreta solo en Docsity! Apuntes de Matemática Discreta 10. Divisibilidad. Algoritmo de la División Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Matemática Discreta Francisco José González Gutiérrez luego, b |q1 − q2| = |r2 − r1| |r2 − r1| < b } =⇒ b |q1 − q2| < b =⇒ b(1− |q1 − q2|) > 0 y al ser b > 0, tendremos que 1− |q1 − q2| > 0 de donde sigue que 0 6 |q1 − q2| < 1 y como q1 y q2 son enteros, tendrá que ser |q1 − q2| = 0 por tanto, q1 = q2 de donde se sigue también que r1 = r2  10.1.2 Corolario Si a y b son enteros, con b 6= 0, entonces existen dos enteros q y r, únicos, tales que a = bq + r, donde 0 6 r < |b|. Demostración Si b > 0, entonces se cumplen las hipótesis del teorema anterior, luego se verifica el corolario. Si b < 0, entonces −b > 0 y aplicando el teorema anterior, existirán dos enteros q1 y r, únicos, tales que a = (−b)q1 + r, con 0 6 r < −b de aqúı que a = b(−q1) + r, con 0 6 r < −b = |b| tomando q = −q1, tendremos que a = bq + r, con 0 6 r < |b| siendo q y r únicos, ya que q1 y r lo eran.  Ejemplo 10.1 1. Sean a = 9 y b = 2. El mayor múltiplo de 2 menor o igual que 9 es 2 · 4, luego tomando q = 4 y r = 9 − 2 · 4 = 1, tendremos que 9 = 2 · 4 + 1, con 0 6 1 < 2 2. Sean a = 2 y b = 5. El mayor múltiplo de 5 menor o igual que 2 es 5 · 0, luego si q = 0 y r = 2− 5 · 0 = 2, se sigue que 2 = 5 · 0 + 2, con 0 6 2 < 5 3. Sean a = −17 y b = 10. El mayor múltiplo de 10 menor o igual que −17 es 10 · (−2), luego tomando q = −2 y r = −17− 10 · (−2) = 3, tendremos que −17 = 10(−2) + 3, con 0 6 3 < 10 267 Universidad de Cádiz Departamento de Matemáticas 4. Sean a = −10 y b = 17. El mayor múltiplo de 17 menor o igual que −10 es 17(−1), luego si tomamos q = −1 y r = −10− 17(−1) = 7, resulta que −10 = 17(−1) + 7, con 0 6 7 < 17 5. Sean a = 61 y b = −7. El mayor múltiplo de −7 menor o igual que 61 es (−7)(−8), aśı pues si tomamos q = −8 y r = 61− (−7)(−8) = 61− 56 = 5, tendremos que 61 = (−7)(−8) + 5, con 0 6 5 < |−7| = 7 6. Sean a = 7 y b = −61. El mayor múltiplo de −61 menor o igual que 7 es (−61) · 0, por tanto tomando q = 0 y r = 7− (−61) · 0 = 7, resulta 7 = (−61) · 0 + 7, con 0 6 7 < |−61| = 61 7. Sean a = −21 y b = −15. El mayor múltiplo de −15 menor o igual que −21 es (−15)(−2). Tomando q = −2 y r = −21 − (−15)(−2) = 9, resulta −21 = (−15)(−2) + 9, con 0 6 9 < |−15| = 15 8. Sean a = −15 y b = −21. El mayor múltiplo de −21 menor o igual que −15 es (−21) · 1, aśı pues, si tomamos q = 1 y r = −15− (−21) · 1 = 6, tendremos −15 = (−21) · 1 + 6, con 0 6 6 < |−21| = 21  Ejemplo 10.2 Demuéstrese que el cuadrado de cualquier número impar puede escribirse en la forma (a) 4k + 1 (b) 8k + 1 Solución En efecto, sea a cualquier número entero. (a) Por el teorema de existencia y unicidad de cociente y resto, pueden encontrarse dos números enteros q y r, únicos, tales que a = 2q + r, con 0 6 r < 2 es decir, a = 2q + r, con r = 0 ó r = 1. Pues bien, Si r = 0, entonces a = 2q, es decir a es par. Si r = 1, entonces a = 2q + 1, es decir a es impar, y a2 = (2q + 1)2 = 4q2 + 4q + 1 = 4(q2 + q) + 1 = 4k + 1, con k = q2 + q ∈ Z 268 Matemática Discreta Francisco José González Gutiérrez (b) En el apartado anterior teńıamos que a2 = 4(q2 + q) + 1, con q ∈ Z o lo que es igual a2 = 4q(q + 1) + 1, con q ∈ Z. Pues bien, q(q + 1) es par ya que uno de los dos, q o q + 1 será par, luego q(q + 1) puede escribirse en la forma 2k, con k entero. De aqúı que a2 = 4q(q + 1) + 1 = 4 · 2k = 8k + 1, con k ∈ Z.  Ejemplo 10.3 Demuéstrese que si un número entero es a la vez un cuadrado y un cubo, entonces puede escribirse en la forma 7k ó 7k + 1. Solución Sea n cualquier número entero. Entonces, si ha de ser a la vez un cuadrado y un cubo, quiere decir que pueden encontrarse a y b enteros, tales que n = a2 = b3 Por el teorema 10.1.1, existirán q1, q2, r1 y r2, únicos, tales que a = 7q1 + r1, con 0 6 r1 < 7 b = 7q2 + r2, con 0 6 r2 < 7 Pues bien, a = 7q1 + r1 =⇒ a2 = 49q21 + 14q1r1 + r21 = 7(7q21 + 2q1r1) + r21 = 7k1 + r21, con k1 = 7q21 + 2q1r1 ∈ Z b = 7q2 + r2 =⇒ b3 = 7(49q3 + 21q22r2 + 21q22r2 + 3q2r22) + r32 = 7k2 + r32, con k2 ∈ Z Entonces, a2 = b3 =⇒ 7k1 + r21 = 7k2 + r32, con 0 6 r1, r2 6 7 y, de nuevo por el teorema 10.1.1, k1 = k2 y r21 = r 3 2. En el siguiente cuadro tenemos las opciones que se presentan. r1 0 1 2 3 4 5 6 r21 0 1 4 9 16 25 36 r32 0 1 8 27 64 125 216 r2 0 1 2 3 4 5 6 Como puede observarse, las únicas opciones en las que coinciden es cuando r1 y r2 son los dos 0 ó los dos 1. O sea, a2 = b3 ⇐⇒ a2 y b3 son de la forma 7k ó 7k + 1 Por tanto, n es cuadrado y cubo =⇒ n = 7k ó n = 7k + 1  Ejemplo 10.4 Demostrar que (a) El cuadrado de cualquier número entero es de la forma 3k ó 3k + 1. (b) El cubo de cualquier número entero es de la forma 9k, 9k + 1 ó 9k + 8. 269 Universidad de Cádiz Departamento de Matemáticas Demostración En efecto, dados n y b, por 10.1.1, existirán q1 y a0, únicos, tales que n = bq1 + a0, con 0 6 a0 < b y q1 < n. Obtenido q1 y aplicando de nuevo el algoritmo de la división, pueden encontrarse q2 y a1, únicos, tales que q1 = bq2 + a1 con 0 6 a1 < b, y q2 < q1. Reiterando el proceso, q2 = bq3 + a2 con 0 6 a2 < b, y q3 < q2 q3 = bq4 + a3 con 0 6 a3 < b, y q4 < q3 y aśı sucesivamente. Tendremos una sucesión de enteros positivos, n, q1, q2, q3, q4, . . . tal que n > q1 > q2 > q3 > q4 > · · · y que por el principio del buen orden, tiene un primer elemento qk tal que qk = b · 0 + ak, con 0 6 ak < b y ak ha de ser distinto de cero ya que de lo contrario qk seŕıa cero, lo cual es imposible ya que es un entero positivo. Pues bien, sustituyendo el valor de q1 en n, n = q1b + a0 q1 = q2b + a1 } =⇒ n = (q2b + a1) b + a0 = q2b2 + a1b + a0 y sustituyendo en este resultado el valor de q2, n = q2b2 + a1b + a0 q2 = q3b + a2 } =⇒ n = (q3b + a2) b2 + a1b + a0 = q3b3 + a2b2 + a1b + a0. Repitiendo el proceso para q3, n = q3b3 + a2b2 + a1b + a0 q3 = q4b + a3 } =⇒ n = (q4b + a3) b3 + a2b2 + a1b + a0 = q4b4 + a3b3 + a2b2 + a1b + a0. Y siguiendo hasta qk, n = qkb + ak−1bk−1 + · · ·+ a2b2 + a1b + a0 qk = ak } =⇒ n = akbk + ak−1bk−1 + · · ·+ a2b2 + a1b + a0 donde por 10.1.1, los coeficientes ak son únicos, 0 6 ai < b, i = 0, 1, . . . , k y, como ya hemos visto, ak 6= 0. La expresión obtenida es la descomposición polinómica de n en la base b y se escribe a0a1a2 · · · ak(b .  Ejemplo 10.6 Escribir en forma decimal el número 1243(5. Solución Bastaŕıa escribir la representación polinómica del número. 1243(5 = 3 + 4 · 5 + 2 · 52 + 1 · 53 = 3 + 20 + 50 + 125 = 198 272 Matemática Discreta Francisco José González Gutiérrez  En el ejemplo siguiente veremos como puede utilizarse el teorema 10.1.1 para hacer lo contrario, es decir escribir la representación de números enteros en bases distintas de la decimal. Ejemplo 10.7 Escribir el número 5346 en base 7. Solución El número dado en base 7 será: 5346 = akak−1ak−2 · · · a2a1a0(7 y utilizando la representación polinómica del número, 5346 = ak · 7k + ak−1 · 7k−1 + ak−2 · 7k−2 + · · ·+ a2 · 72 + a1 · 7 + a0 = 7 ( ak · 7k−1 + ak−1 · 7k−2 + ak−2 · 7k−3 + · · ·+ a2 · 7 + a1 ) + a0. (10.1) Por otra parte, por el 10.1.1, 5346 = 7 · 763 + 5 (10.2) y por la unicidad del cociente y resto, de (10.1) y (10.2), se sigue que a0 = 5 y 763 = ak · 7k−1 + ak−1 · 7k−2 + ak−2 · 7k−3 + · · ·+ a2 · 7 + a1. Entonces, 763 = ak · 7k−1 + ak−1 · 7k−2 + · · ·+ a3 · 72 + a2 · 7 + a1 = 7 ( ak · 7k−2 + ak−1 · 7k−3 + · · ·+ a3 · 7 + a2 ) + a1. (10.3) y por 10.1.1, 763 = 7 · 109 + 0 (10.4) y, de nuevo, por la unicidad del cociente y el resto, de (10.3) y (10.4), tendremos que a1 = 0 y 109 = ak · 7k−2 + ak−1 · 7k−3 + · · ·+ a4 · 72 + a3 · 7 + a2. Repitiendo el proceso, 109 = 7 ( ak · 7k−3 + ak−1 · 7k−4 + · · ·+ a4 · 7 + a3 ) + a2 y 109 = 7 · 15 + 4 luego, a2 = 4 y 15 = ak · 7k−3 + ak−1 · 7k−4 + · · ·+ a5 · 72 + a4 · 7 + a3. Repetimos de nuevo, y 15 = 7 ( ak · 7k−4 + ak−1 · 7k−5 + · · ·+ a5 · 7 + a4 ) + a3 y 15 = 7 · 2 + 1 273 Universidad de Cádiz Departamento de Matemáticas luego, a3 = 1 y 2 = ak · 7k−4 + ak−1 · 7k−5 + · · ·+ a6 · 72 + a5 · 7 + a4. Por última vez, 2 = 7 ( ak · 7k−5 + ak−1 · 7k−6 + · · ·+ a6 · 7 + a5 ) + a4 y 2 = 7 · 0 + 2 luego, a4 = 2 y 0 = ak · 7k−5 + ak−1 · 7k−6 + · · ·+ a6 · 7 + a5. A partir de aqúı todos los restos son cero, el proceso termina, y 5346 = 2 · 74 + 1 · 73 + 4 · 72 + 0 · 7 + 5 = 21405(7. En la práctica, este proceso de divisiones sucesivas suele hacerse en la forma 5346 7 44 763 7 26 06 109 7 5 63 39 15 7 0 4 1 2 y 5346 = 21405(7  Nota 10.1 El sistema de numeración en base 2 o sistema binario es de vital importancia en la in- formática. Los únicos d́ıgitos que pueden utilizarse son los bits 0 y 1. Con los d́ıgitos 0 y 1, el número de números de cuatro cifras que pueden construirse es V R2,4 = 24 = 16 luego utilizando cuatro posiciones, con los bits 0 y 1 podemos representar 16 números enteros. La representación binaria de los dieciséis primeros números enteros es 274 Matemática Discreta Francisco José González Gutiérrez 0111 1100 7 C luego 01111100(2 = 7C(16  10.2.3 Representación Binaria de un Hexadecimal de Cuatro Dı́gitos Veamos ahora como puede escribirse directamente en binario un número hexadecimal de cuatro d́ıgitos. El número de representaciones hexadecimales con cuatro d́ıgitos será V R16,4. Si, al igual que en el apartado anterior, a cada uno de ellos le hacemos corresponder su representación en binario y x es el número de bits que tiene dicha representación, tendremos que V R2,x = V R16,4 de aqúı que 2x = 164 =⇒ 2x = 216 =⇒ x = 16 es decir cada número de cuatro d́ıgitos hexadecimales puede representarse por 16 d́ıgitos binarios (dos octetos). Pues bien, sea N un entero arbitrario y sean N = a3a2a1a0(16 y N = b15b14b13b12b11b10b9b8b7b6b5b4b3b2b1b0(2 sus representaciones en hexadecimal con cuatro d́ıgitos y en binario con 16 bits, respectivamente. En- tonces, N = a0 + a1 · 16 + a2 · 162 + a3 · 163 y N = b0 + b1 · 2 + b2 · 22 + b3 · 23 + b4 · 24 + b5 · 25 + b6 · 26 + b7 · 27 + b8 · 28 + b9 · 29 + b10 · 210 + b11 · 211 + b12 · 212 + b13 · 213 + b14 · 214 + b15 · 215 o sea, N = a0 + a1 · 16 + a2 · 162 + a3 · 163 y N = b0 + b1 · 2 + b2 · 22 + b3 · 23 + 16 ( b4 + b5 · 2 + b6 · 22 + b7 · 23 ) + 162 ( b8 + b9 · 2 + b10 · 22 + b11 · 23 ) + 163 ( b12 + b13 · 2 + b14 · 22 + b15 · 23 ) y como la descomposición polinómica de un número en una base dada es única, a0 = b0 + b1 · 2 + b2 · 22 + b3 · 23 a1 = b4 + b5 · 2 + b6 · 22 + b7 · 23 a2 = b8 + b9 · 2 + b10 · 22 + b11 · 23 a3 = b12 + b13 · 2 + b14 · 22 + b15 · 23 277 Universidad de Cádiz Departamento de Matemáticas es decir, a0(16 = b3b1b2b0(2 a1(16 = b7b6b5b4(2 a2(16 = b11b10b9b8(2 a3(16 = b15b14b13b12(2 Aśı pues, para convertir un número hexadecimal de cuatro d́ıgitos a binario, basta obtener la repre- sentación binaria con cuatro d́ıgitos de cada uno de los śımbolos hexadecimales.  Ejemplo 10.9 Obtener la representación binaria del número hexadecimal A8B3. Solución Según la tabla, A 8 B 3 1010 1000 1011 0011 luego A8B3(16 = 1010100010110011(2  10.3 El principio del Buen Orden Sea A un conjunto cualquiera y R una relación de orden definida en él, es decir, R ⊆ A×A : R es de orden 10.3.1 Conjunto Bien Ordenado Un conjunto se dice que está bien ordenado por una relación de orden, cuando ésta es total y además, todo subconjunto suyo no vaćıo tiene primer elemento. Veamos algunos ejemplos que nos aclararán este concepto. Ejemplo 10.10 1. Sea Z el conjunto de los números enteros y R la relación “menor o igual”. Pues bien, sabemos que R es una relación de orden total, sin embargo Z carece de primer elemento, luego no está bien ordenado. 2. Sea R el conjunto de los números reales y R la misma relación anterior. Por las mismas razones que en el punto anterior, R está totalmente ordenado, sin embargo no está bien ordenado. En efecto, el intervalo (−1, 1) es una parte no vaćıa de R y carece de primer elemento. 3. Sea Z+. Si consideramos la misma relación que en los ejemplos anteriores, Z+ está totalmente ordenado y además toda parte no vaćıa de Z+ tiene elemento mı́nimo o primer elemento, luego Z+ está bien ordenado con la relación supuesta. 278 Matemática Discreta Francisco José González Gutiérrez 4. Sea Q+ = {x ∈ Q : x > 0}. Pues bien, Q+ no está bien ordenado con la relación de los apartados anteriores. En efecto, si lo estuviese entonces existiŕıa q ∈ Q+ tal que q es el mı́nimo de Q+, pero 0 < q 2 < q y q 2 ∈ Q+, luego q no seŕıa el mı́nimo y de la contradicción se sigue Q+ no está bien ordenado. 10.4 Divisibilidad Aunque el conjunto de los números enteros Z no es cerrado para la división, hay muchos casos en los que un número entero divide a otro. Por ejemplo 2 divide a 12 y 3 divide a −27. La división es exacta y no existe resto. Aśı pues, el que 2 divida a 12 implica la existencia de un cociente, 6, tal que 12 = 2 · 6. 10.4.1 Definición Sean a y b dos números enteros tales que a 6= 0. Diremos que a divide a b si existe un número entero q tal que b = a · q. Suele notarse a|b, es decir, a|b ⇐⇒ ∃q ∈ Z : b = aq Expresiones equivalentes a “a divide a b” son “a es un divisor de b” o “b es múltiplo de a” o “b es divisible por a”. Nota 10.2 Obsérvese que si negamos ambos miembros de la equivalencia anterior, en virtud de la equivalencia lógica entre una proposición y su contrarrećıproca, tendremos a|/b ⇐⇒ b 6= a · q; ∀q ∈ Z es decir, a no divide a b si b 6= aq para cualquier entero. Dicho de otra forma, si b no es múltiplo de a. Ejemplo 10.11 (a) 2 divide a 6 ya que 6 = 2 · 3, con 3 ∈ Z. (b) 5 divide a −45 ya que −45 = 5(−9), con −9 ∈ Z. (c) −4 divide a 64 ya que 64 = (−4)(−16), con −16 ∈ Z. (d) −7 divide a −21 ya que −21 = (−7)3, con 3 ∈ Z. (e) 3 no divide a 5 ya que no existe ningún número entero q tal que 5 = 3 · q.  Obsérvese que la definición de divisibilidad nos permite hablar de división en Z sin ir a Q. Nota 10.3 Aunque nuestro objetivo no es el estudio de la estructura algebraica de los números enteros, es importante recordar que la suma y el producto de números enteros son operaciones asociativas y conmutativas, que {Z,+} es grupo abeliano y que se satisface la propiedad distributiva del producto respecto de la suma, por lo que {Z,+, ·} es un anillo conmutativo con elemento unidad (el 1) y sin divisores de cero.  279 Universidad de Cádiz Departamento de Matemáticas Aplicando el resultado obtenido en el ejemplo 10.12, b |a ∧ b |a + 2  =⇒ b |a + 2− a =⇒ b |2 =⇒ b = 1 ó b = 2  Ejemplo 10.15 Pruébese que si a y b son números enteros positivos e impares, entonces 2 divide a a2 + b2 pero 4 no divide a a2 + b2. Solución a ∈ Z+ a impar } =⇒ a = 2p− 1, con p ∈ Z+ b ∈ Z+ b impar } =⇒ b = 2q − 1, con q ∈ Z+ Entonces, a2 + b2 = (2p− 1)2 + (2q − 1)2 = 4p2 − 4p + 1 + 4q2 − 4q + 1 = 2(2p2 + 2q2 − 2p− 2q + 1) siendo 2p2 + 2q2 − 2p− 2q + 1 entero, luego 2 ∣∣a2 + b2 Veamos ahora que 4|/a2 + b2. En efecto, supongamos que lo contrario es cierto, es decir, 4 ∣∣a2 + b2 Pues bien, 4 ∣∣4(p2 − p + q2 − q) es decir, 4 ∣∣a2 + b2 − 2 Aśı pues, 4 ∣∣a2 + b2 y 4 ∣∣(a2 + b2)− 2  =⇒ 4 ∣∣(a2 + b2)− [(a2 + b2)− 2] =⇒ 4 |2 lo cual, obviamente, es falso y, por tanto, la suposición hecha no es cierta. Consecuentemente, 4|/a2 + b2  Ejemplo 10.16 Demostrar que la diferencia de los cubos de dos números consecutivos no puede ser múltiplo de 3. Solución Sea p un número entero arbitrario. Entonces, (p + 1)3 − p3 = p3 + 3p2 + 3p + 1− p3 = 3(p2 + p) + 1, p2 + p ∈ Z. Luego por el teorema de existencia y unicidad de cociente y resto se sigue que el resto de dividir (p+1)3−p3 entre 3 es 1, luego (p + 1)3 − p3 6= 3k, ∀k ∈ Z 282 Matemática Discreta Francisco José González Gutiérrez es decir, 3|/(p + 1)3 − p3 o sea no es múltiplo de 3.  Ejemplo 10.17 Demostrar que para cualquier número natural n se verifica que 6 ∣∣n3 + 5n . Solución Utilizamos para la demostración el primer principio de inducción matemática. Sean p(1), p(2), . . ., predicados con el conjunto Z+ de los números enteros positivos como universo del discurso. “Si p(1) es verdad y de la veracidad de p(k) se deduce la veracidad de p(k + 1), entonces la proposición p(n) es cierta para cualquier natural n.” Pues bien, sea p(n) : 6|n3 + 5n. Paso básico. Veamos que p(n) es verdad para n = 1, es decir que 6 ∣∣13 + 5 · 1 , lo cual, es evidente. Paso inductivo. Veamos que ∀k, [p(k) =⇒ p(k + 1)]. En efecto, supongamos que p(n) es cierta para n = k, es decir, 6 ∣∣k3 + 5k (10.5) Probemos que p(n) es cierta para n = k + 1. En efecto, (k + 1)3 + 5(k + 1) = k3 + 3k2 + 3k + 1 + 5k + 5 = (k3 + 5k) + 3k(k + 1) + 6 (10.6) Pues bien, k impar =⇒ k + 1 es par =⇒ k(k + 1) es par k par =⇒ k + 1 es impar =⇒ k(k + 1) es par } =⇒ 2 |k(k + 1) , para cualquier k ∈ Z+ y por el ejemplo 10.13, 2 |k(k + 1) y 3 |3  =⇒ 6 |3k(k + 1) Aśı pues, utilizando este resultado y la hipótesis de inducción (10.5), tendremos 6 ∣∣k3 + 5k y 6 |3k(k + 1)  Ejemplo 10.12=⇒ 6 ∣∣(k3 + 5k) + 3k(k + 1) + 6 (10.6)=⇒ 6 ∣∣(k + 1)3 + 5(k + 1) luego la proposición es cierta para n = k + 1 y por el primer principio de inducción matemática, 6 ∣∣n3 + 5n , ∀n ∈ Z+  Ejemplo 10.18 Probar que para cada n > 0, el número 42n+1 + 3n+2 es múltiplo de 13. Solución Paso básico. Para n=0, 42·0+1 + 3n+2 = 4 + 9 = 13, luego es cierto. 283 Universidad de Cádiz Departamento de Matemáticas Paso inductivo. Supongamos que es cierto para n = k, es decir 42k+1 + 3k+2 es múltiplo de 13. Veamos que es cierto para n = k + 1. En efecto, 42(k+1)+1 + 3(k+1)+2 = 4(2k+1)+2 + 3(k+2)+1 = 42k+1 · 42 + 3k+2 · 3 = 42k+1 · 42 + 3k+2 · 3 + 42 · 3k+2 − 42 · 3k+2 = 42 ( 42k+1 + 3k+2 ) + 3k+2(3− 16) = 42 ( 42k+1 + 3k+2 ) + 3k+2(−13) Pues bien, utilizando la hipótesis de inducción (paso inductivo), tendremos 13 ∣∣42k+1 + 3k+2 =⇒ 13 ∣∣42 (42k+1 + 3k+2) 13 |−13 =⇒ 13 ∣∣3k+2 (−13) } =⇒ 13 ∣∣42 (42k+1 + 3k+2)+ 3k+2(−13) =⇒ 13 ∣∣42(k+1)+1 + 3(k+1)+2 luego la proposición es cierta para n = k + 1. El primer principio de inducción matemática asegura, por tanto, que 42n+1 + 3n+2 es múltiplo de 13.  Ejemplo 10.19 Si n ∈ Z+ y n es impar, pruébese que 8 ∣∣n2 − 1 . Solución Utilizamos el primer principio de inducción matemática. 1. Veamos que es cierto para n = 1. En efecto, para cada a entero, se verifica que a |0 luego, en particular, 8 |0 , es decir, 8 ∣∣12 − 1 de aqúı que la proposición sea cierta para n = 1. 2. Supongamos que es cierta para n = k, es decir, 8 ∣∣k2 − 1 y veamos si lo es para n = k + 2. En efecto, (k + 2)2 − 1 = k2 + 4k + 4− 1 = k2 − 1 + 4(k + 1) pero k es impar, luego k + 1 es par y por tanto, existirá q ∈ Z tal que k + 1 = 2q de donde 4(k + 1) = 8q, es decir, 4(k + 1) es un múltiplo de 8, y (k + 2)2 − 1 = k2 − 1 + 8q Pues bien, por la hipótesis de inducción 8 ∣∣k2 − 1 y 8 |8q por tanto, 8 ∣∣k2 − 1 + 8q luego, 8 ∣∣(k + 2)2 − 1 Aplicando el principio de inducción, de 1. y 2. se sigue que 8 ∣∣n2 − 1 cualquiera que sea n impar.  284 Matemática Discreta Francisco José González Gutiérrez de aqúı que k∑ i=1 air i = a0 luego por el criterio anterior, “n sea divisible por 2 si, y sólo si lo es su última cifra”  Ejemplo 10.22 Obtener una condición necesaria y suficiente para que un número entero positivo sea divisible por 3. Solución Sea n ∈ Z+, cualquiera, sea n = ak10k + ak−110k−1 + · · ·+ a2102 + a110 + a0 = k∑ i=0 ai10i su representación decimal y sean ri los restos de dividir 10i entre 3 para i = 0, 1, 2, . . . , k. Por 10.1.1, existirá un entero positivo q tal que 10 = 3q + 1 luego, 10i = (3q + 1)i y desarrollando por el teorema del binomio, (??), 10i = (3q + 1)i = i∑ k=0 ( i k ) (3q)k = 1 + i∑ k=1 ( i k ) 3kqk = 1 + 3 [ i∑ k=1 ( i k ) 3k−1qk ] { Tomando qi = i∑ k=1 ( i k ) 3k−1qk } = 3qi + 1, qi ∈ Z es decir, los restos, ri, de dividir 10i entre 3 para i = 0, 1, 2, . . . , k son siempre iguales a 1, luego k∑ i=1 airi = k∑ i=1 ai de aqúı que por el criterio general de divisibilidad, (10.5.1), n es divisible por 3 si, y sólo si lo es la suma de sus cifras, o lo que es igual Una condición necesaria y suficiente para que un entero positivo sea divisible por 3 es que la suma de sus cifras sea múltiplo de 3. 287 Universidad de Cádiz Departamento de Matemáticas  Ejemplo 10.23 Obtener un criterio de divisibilidad por 4. Solución Sea n ∈ Z+, cualquiera, sea n = ak10k + ak−110k−1 + · · ·+ a2102 + a110 + a0 = k∑ i=0 ai10i su representación decimal y sean ri los restos de dividir 10i entre 4 para i = 0, 1, 2, . . . , k. Entonces, r0 = 1 y r1 = 2, y si tenemos en cuenta que 4 |100 , es decir, 4 ∣∣102 tendremos que 4 ∣∣10i−2 · 102 , i = 2, 3, . . . , k es decir, 4 ∣∣10i , i = 2, 3, . . . , k luego, ri = 0, i = 2, 3, . . . , k de aqúı que k∑ i=0 airi = a0 + 2a1 es decir, “n es divisible por 4 si, y sólo si lo es la suma de la cifra de las unidades más dos veces la cifra de las decenas”.  Ejemplo 10.24 Obtener un criterio de divisibilidad por 5. Solución Sea n ∈ Z+, cualquiera, sea n = ak10k + ak−110k−1 + · · ·+ a2102 + a110 + a0 = k∑ i=0 ai10i su representación decimal y sean ri los restos de dividir 10i entre 5 para i = 0, 1, 2, . . . , k. Entonces, r0 = 1 y ri = 0, i = 1, 2, . . . , k de aqúı que k∑ i=1 air i = a0 luego por el criterio general de divisibilidad, “n sea divisible por 5 si, y sólo si lo es su última cifra” 288 Matemática Discreta Francisco José González Gutiérrez  Ejemplo 10.25 Obtener un criterio de divisibilidad por 8. Solución Sea n ∈ Z+, cualquiera, y sea n = ak10k + ak−110k−1 + · · ·+ a2102 + a110 + a0 = k∑ i=0 ai10i su representación polinómica en base decimal. Si ri son los restos de dividir 10i entre 8 para i = 0, 1, 2 . . . , k, entonces r0 = 1, r1 = 2 y r2 = 4 y teniendo en cuenta que 8|1000, es decir, 8 ∣∣103 tendremos que 8 ∣∣10i−3103 , i = 3, 4, . . . , k o sea, 8 ∣∣10i , i = 3, 4, . . . , k de aqúı que ri = 0, i = 3, 4, . . . , k y, consecuentemente, k∑ i=0 airi = a0 + 2a1 + 4a2. Aplicando el criterio general de divisibilidad, “n es divisible por 8 si, y sólo lo es la suma de las cifras de sus unidades más dos veces la cifra de sus decenas más cuatro veces la cifra de sus centenas”  10.6 Máximo Común Divisor Siguiendo con la operación de división que desarrollamos anteriormente, centraremos ahora nuestra atención en los divisores comunes de un par de números enteros. 10.6.1 Divisor Común Dados dos números enteros a y b, diremos que el entero d 6= 0, es un divisor común de ambos, si divide a “a” y divide a “b”, es decir, d 6= 0, es divisor común de a y b ⇐⇒ d |a y d |b Obsérvese que es lo mismo que decir que a y b son divisibles por d o que a y b son múltiplos de d. Ejemplo 10.26 2 |4 y 2 |8 , luego 2 es un divisor común de 4 y 8. 289 Universidad de Cádiz Departamento de Matemáticas 1. a < 0 y b > 0. Entonces, d|a y d|b =⇒ d| − a y d|b =⇒ d ||a| y d ||b| 2. a > 0 y b < 0. Entonces, d|a y d|b =⇒ d|a y d| − b =⇒ d ||a| y d ||b| 3. a < 0 y b < 0. Entonces, d|a y d|b =⇒ d| − a y d| − b =⇒ d ||a| y d ||b| 4. a > 0 y b > 0. Entonces, d|a y d|b =⇒ d ||a| y d ||b| Luego en cualquier caso, el conjunto de los divisores comunes a “a” y a “b” coincide con el de los divisores comunes a |a| y a |b|, por lo tanto el máximo común divisor será el mismo, es decir, m.c.d. (a, b) = m.c.d. (|a|, |b|) Obsérvese que si a y b son enteros positivos, esto es lo mismo que decir que m.c.d. (−a, b) = m.c.d. (a,−b) = m.c.d. (−a,−b) = m.c.d. (a, b) .  10.6.4 Máximo Común Divisor de Varios Números Sean a1, a2, . . . , an números enteros. Llamaremos máximo común divisor de a1, a2, . . . , an al divisor común d > 0 tal que cualquier otro divisor común de a1, a2, . . . . . . , an divide también a d. Se designará mediante m.c.d.(a1, a2, . . . . . . , an). Nota 10.4 Nos planteamos ahora las siguientes cuestiones: 1. Dados dos números enteros a y b, ¿existe siempre su máximo común divisor? Caso de que la respuesta sea afirmativa, ¿cómo se hallaŕıa dicho número? 2. ¿Cuántos máximo común divisor pueden tener un par de números enteros? El siguiente teorema responde a ambas preguntas demostrando la existencia y unicidad del máximo común divisor de dos números enteros. 10.6.5 Existencia y Unicidad del m.c.d. Dados dos números enteros a y b distintos de cero, existe un único d, que es el máximo común divisor de ambos. Demostración Supondremos que a y b son de Z+ ya que según hemos visto en 10.6.3 (ii), si uno de los dos o ambos fuera negativo el máximo común divisor seŕıa el mismo. Existencia. Sea C el conjunto de todas las combinaciones lineales positivas con coeficientes enteros que puedan formarse con a y b, es decir, C = { ma + nb ∈ Z+ : m,n ∈ Z } 292 Matemática Discreta Francisco José González Gutiérrez C es no vaćıo. En efecto, como a es positivo, podemos escribirlo en la forma: a = 1 · a + 0 · b y, al menos, a estaŕıa en C. Aśı pues, C es un subconjunto no vaćıo de Z+. Aplicamos el principio de buena ordenación (10.3) y C ha de tener primer elemento o elemento mı́nimo y que llamaremos d. Veamos que d es el máximo común divisor de a y b. En efecto, d ∈ C =⇒ d = sa + tb, con s y t enteros Pues bien, 1. d es un divisor común de a y b. Supongamos lo contrario, es decir d no es divisor de a ó d no es divisor de b. Entonces, si d no divide a a, por el teorema de existencia y unicidad de cociente y resto (10.1.1), podremos encontrar dos enteros q y r tales que a = dq + r, con 0 < r < d de aqúı que r = a− dq =⇒ r = a− (sa + tb)q =⇒ r = (1− sq)a + (−tq)b > 0 con 1− sq y −tq enteros, luego r está en C. Aśı pues, tenemos que r ∈ C y r < d lo cual contradice el que d sea el mı́nimo de C. Consecuentemente, la suposición hecha es falsa y d |a . Con un razonamiento idéntico, se prueba que d |b . 2. Veamos ahora que d es el máximo de los divisores comunes a a y b. En efecto, si c ∈ Z es otro divisor común de a y de b, entonces c|a y c|b  10.4.2 (iv)=⇒ c |ma + nb cualesquiera que sean m y n enteros. En particular, c |sa + tb luego c |d De 1. y 2. se sigue que d = m.c.d. (a, b). Unicidad. En efecto, supongamos que hubiese dos máximo común divisor de a y b, digamos d1 y d2. Entonces, d1 = m.c.d. (a, b) d2 es divisor común de a y b } =⇒ d2 |d1 d2 = m.c.d. (a, b) d1 es divisor común de a y b } =⇒ d1 |d2  10.4.2(ii) =⇒ d1 = d2 ya que por definición d1 y d2 son mayores que cero.  293 Universidad de Cádiz Departamento de Matemáticas 10.6.6 Corolario Si d es el máximo común divisor de a y b, entonces d es el menor entero positivo que puede escribirse como combinación lineal de a y b con coeficientes enteros. Demostración Se sigue directamente del teorema anterior.  Nota 10.5 ¿Será cierto el rećıproco?. Es decir, si d > 0 puede escribirse como combinación lineal con coeficientes enteros de dos números dados a y b, ¿será d = m.c.d.(a, b)? Veamos que, en general, no tiene porque serlo. En efecto, 6 = 2 · 27 + (−8) · 6 y, sin embargo, m.c.d. (27, 6) = 3 6= 6. En la proposición siguiente veremos que si añadimos la hipótesis de que d sea un divisor común de a y de b, entonces si se verifica el rećıproco. 10.6.7 Proposición Si d es el menor entero positivo que puede escribirse como combinación lineal con coeficientes enteros de dos enteros dados a y b y es divisor común de ambos, entonces d es el máximo común divisor de a y de b. Demostración En efecto, supongamos que d = pa + qb, con p, q ∈ Z y d|a y d|b Entonces, 1 d es divisor de a y de b. Directamente de la hipótesis. 2 d es el máximo. En efecto, sea c otro de los divisores comunes de a y b. Entonces, c|a y c|b  =⇒ c|pa + qb, con p y q enteros =⇒ c|d. Por lo tanto, d = m.c.d.(a, b).  Veamos ahora como un corolario a la proposición anterior que en el caso de que el máximo común divisor de a y b sea 1, se verifica el rećıproco sin necesidad de añadirle ninguna hipótesis al número d. 10.6.8 Corolario Si a y b son dos enteros distintos de cero, entonces m.c.d. (a, b) = 1 si, y sólo si existen dos números enteros p y q tales que pa + qb = 1. 294 Matemática Discreta Francisco José González Gutiérrez luego, m.c.d. (a, b) = d =⇒ m.c.d. ( d · a d , d · b d ) = d =⇒ d ·m.c.d. ( a d , b d ) = d =⇒ m.c.d. ( a d , b d ) = 1 Veamos ahora que la hipótesis de que d |a y d |b , permite probar el rećıproco también. “Si”. En efecto, como d |a y d |b , al igual que antes, se sigue que a d y b d son números enteros, por tanto, m.c.d. (a, b) = m.c.d. ( d · a d , d · b d ) = d ·m.c.d. ( a d , b d ) = d · 1 = d  Ejemplo 10.31 Hallar dos números cuyo cociente es igual a 33 21 y su máximo común divisor 90. Solución Si a y b son los números buscados, entonces a b = 33 21 y m.c.d. (a, b) = 90  =⇒  a = 33 21 b y m.c.d. (a, b) = 90 =⇒ m.c.d. ( 33 21 b, b ) = 90 =⇒ m.c.d. ( 3 · 11 3 · 7 b, b ) = 90 =⇒ m.c.d. ( 11 7 b, b ) = 90 =⇒ b 7 m.c.d. (11, 7) = 90 =⇒ b = 7 · 90 m.c.d.(11, 7) =⇒ b = 630 1 =⇒ b = 630 y, por lo tanto, a = 33 21 630 = 990  Ejemplo 10.32 Los lados de un rectángulo vienen dados por números enteros positivos. ¿Cuál será la longitud de dichos lados para que el peŕımetro y la superficie se expresen con el mismo número? 297 Universidad de Cádiz Departamento de Matemáticas Solución Sean x e y los lados del rectángulo, entonces el peŕımetro y la superficie del mismo son, respectivamente, 2x + 2y y xy, luego para que se cumpla la condición del enunciado, ha de ser 2x + 2y = xy Pues bien, 2x + 2y = xy =⇒ 2x− xy = −2y =⇒ x(2− y) = −2y =⇒ x = 2y y − 2 =⇒ x = 2y − 4 + 4 y − 2 =⇒ x = 2 + 4 y − 2 pero x ∈ Z+, luego también ha de ser 4 y − 2 ∈ Z+ o sea, y − 2 ha de ser divisor de 4, por tanto, y − 2 = 1 =⇒ y = 3 ó y − 2 = 2 =⇒ y = 4 ó y − 2 = 4 =⇒ y = 6 Consecuentemente, las soluciones serán y = 3, x = 2 + 4 3− 2 = 6 y = 4, x = 2 + 4 4− 2 = 4 y = 6, x = 2 + 4 6− 2 = 3  Ejemplo 10.33 Se han plantado árboles igualmente espaciados en el contorno de un campo triangular cuyos lados miden 144m., 180m. y 240m. respectivamente. Sabiendo que hay un árbol en cada vértice y que la distancia entre dos árboles consecutivos está comprendida entre 5 y 10 metros. Calcular el número de árboles plantados. Solución Sea d la distancia entre dos árboles consecutivos. Entonces d de ser un divisor de 144, 180 y 240 luego ha de ser divisor de su máximo común divisor. Pues bien, calculemos el máximo común divisor de 144, 180 y 240. Los conjuntos de divisores positivos de los tres números son: D144 = {1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 9, 18, 36, 72, 144} y D180 = {1, 2, 4, 3, 6, 12, 9, 18, 36, 5, 10, 20, 15, 30, 60, 45, 90, 180} y D240 = {1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 5, 10, 20, 40, 80, 15, 30, 60, 120, 240} 298 Matemática Discreta Francisco José González Gutiérrez Por lo tanto, el conjunto de los divisores comunes a los tres números será D144 ∩D180 ∩D240 = {1, 2, 4, 3, 6, 12} y un diagrama de Hasse que represente la ordenación de este conjunto por la relación de divisibilidad es: 12 • 4 • 6 • 2 • • 3 • 1 Como puede apreciarse claramente el máximo es el 12, por lo tanto, m.c.d.(144, 180, 240) = 12. Aśı pues, d ha de ser un divisor de 12 y como éstos son 1, 2, 3, 4, 6 y 12, y d ha de estar comprendido entre 5 y 10, se sigue que d = 6 El número total de árboles plantados será, pues N = 144 6 + 180 6 + 240 6 = 94  10.7 Algoritmo de Euclides Desarrollaremos un método para calcular el máximo común divisor de dos números conocido como el Algoritmo de Euclides1. Este método es más sencillo que el de calcular todos los divisores de ambos números cuando se trata de calcular el máximo común divisor de dos números y éstos son muy grandes. Veamos un teorema previo que sustenta teóricamente el algoritmo. 1Matemático griego del siglo III antes de Cristo. Se sabe que enseñaba matemáticas en Alejandŕıa, donde fundó la escuela más célebre de la antigüedad. Es sobre todo conocido por sus Elementos, que continúan siendo considerados como el libro de geometŕıa por excelencia. En el principio de esta obra, importante por su gran claridad y rigor, hay la definición de las “nociones comunes”, a las que Euclides recurre casi constantemente en las páginas que siguen, y entre las cuales figura su famoso postulado. A continuación va desarrollando, en un orden lógico, los diversos teoremas. El conjunto consta de trece libros, a los que suele unirse otros dos atribuidos a Hipsicles, matemático de Alejandŕıa que vivió probablemente en el siglo II antes de Cristo. Los cuatro primeros libros tratan de la geometŕıa del plano y estudian las razones y las proporciones. La teoŕıa de los números enteros es el objeto de los libros VII, VIII y IX. El libro X, más largo, y considerado también como el más perfecto de todos, está consagrado al estudio de los irracionales algebraicos más simples. La última parte trata de la geometŕıa del espacio. Los Cálculos, especie de complemento de los Elementos, tienen una forma más anaĺıtica. Una obra perdida, la de los Lugares de la superficie, deb́ıa tener por objeto el estudio de las secciones planas de las superficies de revolución de segundo grado. Los textos de Proclo y de Papo nos han transmitido los Porismas sobre los cuales se ha discutido mucho, pero que, según Chasles, contienen en germen las tres teoŕıas modernas de la razón anarmónica, de las divisiones homográficas y de la involución. En fin, en su Optica, Euclides procede como en geometŕıa, poniendo en cabeza algunas proposiciones fundamentales, la más importante de las cuales admite la propagación de los rayos luminosos en ĺınea recta. 299 Universidad de Cádiz Departamento de Matemáticas y al ser rn+1 = 0, será m.c.d. (rn, rn+1) = m.c.d. (rn, 0) = rn y, por tanto, m.c.d. (a, b) = rn finalizando el proceso de obtener el máximo común divisor de los números a y b. En la práctica los cálculos suelen disponerse en la forma siguiente: q1 q2 q3 · · · · · · · · · qn qn+1 a b r1 r2 · · · · · · · · · rn−1 rn = m.c.d. (a, b) r1 r2 r3 · · · · · · · · · rn rn+1 = 0  Ejemplo 10.34 Hallar el máximo común divisor de 1369 y 2597 y expresarlo como una combinación lineal con coeficientes enteros de ellos. Solución Lo haremos de forma práctica, disponiendo los cálculos en una tabla 1 1 8 1 2 2 3 1 1 2 2597 1369 1228 141 100 41 18 5 3 2 1 1228 141 100 41 18 5 3 2 1 0 luego, m.c.d. (2597, 1369) = 1 Para hallar los coeficientes de la combinación lineal pedida, haremos las mismas “cuentas” pero hacia 302 Matemática Discreta Francisco José González Gutiérrez atrás. 1 = 3− 2 · 1 2 = 5− 3 · 1 } =⇒ 1 = 3− (5− 3 · 1)1 = (−1) · 5 + 2 · 3 1 = (−1) · 5 + 4 · 3 3 = 18− 5 · 3 } =⇒ 1 = (−1)5 + 4(18− 5 · 3) = 4 · 18 + (−5) · 5 1 = 4 · 18 + (−5) · 5 5 = 41− 18 · 2 } =⇒ 1 = 4 · 18 + (−5)(41− 18 · 2) = (−5) · 41 + 14 · 48 1 = (−5) · 41 + 14 · 18 18 = 100− 41 · 2 } =⇒ 1 = (−5) · 41 + 4(100− 41 · 2) = 14 · 100− 13 · 41 1 = 14 · 100− 13 · 41 41 = 141− 1 · 100 } =⇒ 1 = 16 · 100− 39(141− 1 · 100) = (−39) · 141 + 55 · 100 1 = (−39) · 141 + 55 · 100 100 = 1228− 8 · 141 } =⇒ 1 = (−39) · 141 + 55(1228− 8 · 141) = 55 · 1228− 479 · 141 1 = 55 · 1228− 479 · 141 141 = 1369− 1 · 1228 } =⇒ 1 = 55 · 1228− 479(1369− 1 · 1228) = (−479)1369 + 534 · 1228 1 = (−479) · 1369 + 534 · 1228 1228 = 2597− 1 · 1369 } =⇒ 1 = (−479) · 1369 + 534(2597− 1 · 1369) = 534 · 2597 + (−1013) · 1369 De aqúı que la combinación lineal buscada sea 1 = 534 · 2597 + (−1013) · 1369 Obsérvese que esta expresión no es única. En efecto, para cualquier k ∈ Z, tendremos 1 = 534 · 2597 + (−1013) · 1369 = 534 · 2597 + (−1013) · 1369 + (−1369k) · 2597 + (2597k) · 1369 = (534− 1369k)2597 + (−1013 + 2597k)1369 Obsérvese también que m.c.d. (−1369, 2597) = 1 m.c.d. (1369,−2597) = 1 m.c.d. (−1369,−2597) = 1 y en tales casos las combinaciones lineales con coeficientes enteros seŕıan: 1 = 1013(−1369) + 534 · 2597 1 = (−1013) · 1369 + (−534)(−2597) 1 = 1013(−1369) + (−534)(−2597)  303 Universidad de Cádiz Departamento de Matemáticas Ejemplo 10.35 Calcular el máximo común divisor de 231 y 1820. Expresar dicho número como una combinación lineal con coeficientes enteros de ellos dos. Solución 7 1 7 4 1820 231 203 28 7 203 28 7 0 Por tanto, m.c.d. (1820, 231) = 7 Calculamos los coeficientes de la combinación lineal siguiendo el proceso inverso. 7 = 203− 28 · 7 28 = 231− 203 · 1 } =⇒ 7 = 203− (231− 203 · 1)7 = (−7)231 + 8 · 203 7 = (−7) · 231 + 8 · 203 203 = 1820− 231 · 7 } =⇒ 7 = (−7) · 231 + 8 (1820− 231 · 7) = 8 · 1820 + (−63) · 231 es decir, la combinación lineal pedida es 7 = 8 · 1820 + (−63) · 231  Ejemplo 10.36 ¿Cuál es el mayor número que al emplearlo como divisor de 68130 y 107275 origina los restos 27 y 49, respectivamente? Solución Sea n el número que buscamos. Entonces, 68130 = nq + 27 107275 = np + 49 } =⇒ 68103 = nq, con q ∈ Z 107226 = np, con p ∈ Z } =⇒ n |68103 y n |107226 luego n es un divisor común a 68103 y 107226 y como tiene que ser el mayor, será n = m.c.d. (68103, 107226) = 1449  Ejemplo 10.37 Halla dos números cuyo máximo común divisor es 7 y tales que los cocientes obtenidos en su determinación por el algoritmo de Euclides son, en orden inverso, 7, 2, 3 y 36. Solución Presentando los cálculos en la forma práctica que vimos antes, si los números buscados son a y b, tendremos 36 3 2 7 a b r1 r2 r3 r1 r2 r3 0 por tanto, m.c.d. (a, b) = r3 304 Matemática Discreta Francisco José González Gutiérrez todos los múltiplos positivos comunes a a y b, tendremos m = m.c.m.(a, b) ⇐⇒  1. a|m y b|m y 2. m = min(M) ⇐⇒  1. a|m y b|m y 2. ∀c, c ∈ M =⇒ m|c ⇐⇒  1. a|m y b|m y 2. ∀c, a|c y b|c =⇒ m|c Ejemplo 10.39 Calcular el mı́nimo común múltiplo de 12 y 15. Solución Aplicaremos la definición directamente. Los conjuntos de múltiplos positivos de 12 y 15 son, respectiva- mente, M12 = {12, 24, 36, 48, 60, 72, 84, 96, 108, 120, . . .} y M15 = {15, 30, 45, 60, 75, 90, 105, 120, . . .} luego el conjunto de todos los múltiplos comunes a ambos es M12 ∩M15 = {60, 120, 180, 240, . . .} y el mı́nimo de este conjunto es para la relación de divisibilidad es 60, luego m.c.m. (12, 15) = 60  10.8.3 Mı́nimo Común Múltiplo de Varios Números Sean a1, a2, . . . , an números enteros. Llamaremos mı́nimo común múltiplo de ellos al múltiplo común m > 0 tal que cualquier otro múltiplo común de dichos números es también múltiplo de m. Se designará por m.c.m. (a1, a2, . . . , an). Obsérvese que la definición dada equivale a decir que es el entero positivo más pequeño que sea múltiplo de todos ellos. 10.8.4 Proposición Sean a y b dos números enteros positivos. Se verifica que m.c.m. (ka, kb) = k ·m.c.m. (a, b) , ∀k ∈ Z+ Demostración Sea m = m.c.m. (a, b). Entonces, 307 Universidad de Cádiz Departamento de Matemáticas 1. m = m.c.m. (a, b) =⇒  a |m =⇒ ka |kmy b |m =⇒ kb |km es decir, km es múltiplo común de ka y kb. 2. Supongamos que c es otro múltiplo común de ka y kb. Entonces, ka |c ⇐⇒ ∃q1 ∈ Z : c = kaq1 =⇒ c k = aq1 ⇐⇒ a ∣∣∣ c k y kb |c ⇐⇒ ∃q2 ∈ Z : c = kbq2 =⇒ c k = bq2 ⇐⇒ b ∣∣∣ c k o sea, c k es un múltiplo común de a y b, luego ha de serlo también de su mı́nimo común múltiplo, m, luego m ∣∣∣ c k ⇐⇒ ∃q ∈ Z : c k = mq ⇐⇒ c = kmq ⇐⇒ km |c y por lo tanto, c es múltiplo de km. Por 1. y 2., tendremos que m.c.m. (ka, kb) = km = k ·m.c.m. (a, b)  10.8.5 Proposición Para cualquier par de números enteros positivos se verifica que el producto del máximo común divisor y de su mı́nimo común múltiplo es igual al producto de los dos números. Demostración Por (ii) de 10.6.9, si d = m.c.d. (a, b), entonces a d y b d son primos entre śı, luego m.c.m. ( a d , b d ) = a d · b d . Pues bien, m.c.d. (a, b) ·m.c.m. (a, b) = d · d ·m.c.m. ( a d , b d ) = d · d · a d · b d = a · b  Ejemplo 10.40 Sean a y b dos números enteros distintos de cero. Demostrar que las siguientes condiciones son equivalentes. (i) a |b (ii) m.c.d. (a, b) = |a| (iii) m.c.m. (a, b) = |b| Solución (i) =⇒ (ii) En efecto, si a divide a b, entonces a es un divisor común de a y b y además cualquier otro divisor común de a y de b divide a a, luego Si a > 0, entonces m.c.d. (a, b) = a Si a < 0, entonces m.c.d. (a, b) = m.c.d. (−a, b) = −a } =⇒ m.c.d. (a, b) = |a| 308 Matemática Discreta Francisco José González Gutiérrez (ii) =⇒ (iii) En efecto, supongamos que m.c.d. (a, b) = |a|, entonces por la proposición anterior, m.c.d. (a, b) ·m.c.m. (a, b) = |a · b| =⇒ |a| ·m.c.m. (a, b) = |a| · |b| y de aqúı se sigue que m.c.m. (a, b) = |b| (iii) =⇒ (i) En efecto, si m.c.m. (a, b) = |b|, entonces, de la definición de mı́nimo común múltiplo se sigue que |b| es un múltiplo de a, es decir a divide a |b|, luego a |b  Ejemplo 10.41 Determinar el máximo común divisor y el mı́nimo común múltiplo de las siguientes parejas de números y expresar, en cada caso, el máximo común divisor como una combinación lineal de ellos. (a) 2689 y 4001 (b) 7982 y 7983 Solución (a) Hallamos el máximo común divisor de 2689 y 4001 mediante el algoritmo de Euclides. 1 2 20 5 2 2 2 4001 2689 1312 65 12 5 2 1 1312 65 12 5 2 1 0 luego, m.c.d. (4001, 2689) = 1 y, por tanto, m.c.m. (4001, 2689) = 4001 · 2689 = 10758689 Expresamos ahora el máximo común divisor como una combinación lineal con coeficientes enteros de 4001 y 2689 1 = 5− 2 · 2 2 = 12− 2 · 5 } =⇒ 1 = 5− 2(12− 2 · 5) = −2 · 12 + 5 · 5 1 = −2 · 12 + 5 · 5 5 = 65− 5 · 12 } =⇒ 1 = −2 · 12 + 5(65− 5 · 12) = 5 · 65 + (−27) · 12 1 = 5 · 65− 27 · 12 12 = 1312− 20 · 65 } =⇒ 1 = 5 · 65− 27(1312− 20 · 65) = −27 · 1312 + 545 · 65 1 = −27 · 1312 + 545 · 65 65 = 2689− 2 · 1312 } =⇒ 1 = −27 · 1312 + 545(2689− 2 · 1312) = 545 · 2689− 1117 · 1312 1 = 545 · 2689− 1117 · 1312 1312 = 4001− 1 · 2689 } =⇒ 1 = 545 · 2689− 1117(4001− 1 · 2689) = −1117 · 4001 + 1662 · 2689 309 Universidad de Cádiz Departamento de Matemáticas Solución Sean a y b los números buscados y sea d su máximo común divisor. Si llamamos a′ = a d y b′ = b d entonces, m.c.d. (a′, b′) = 1 y m.c.m. (a′, b′) = a′ · b′ Pues bien, sea m = m.c.m. (a, b), entonces a′ · b′ = a · b d · d = m d =⇒ d · a′ · b′ = 1768 por tanto, da′b′ = 1768 da′ + db′ = 240 } =⇒ da ′b′ d(a′ + b′) = 23 · 221 24 · 15 =⇒ a ′b′ a′ + b′ = 221 30 Veamos que a′b′ y a′ + b′ son primos entre śı. En efecto, si c es el máximo común divisor de a′b′ y a′ + b′, entonces c |a′b′ y c |a′ + b′ =⇒ c ∣∣a′2 + a′b′  =⇒ c ∣∣a′2 y como m.c.d. (a′, b′) = 1, existirán dos números enteros p y q tales que pa′ + qb′ = 1 luego, pa′2 + qa′b′ = a′ consecuentemente, c |a′ Análogamente y con el mismo razonamiento, puede probarse que c |b′ . Aśı pues, c es un divisor común de a′ y b′, por tanto deberá ser divisor de su máximo común divisor, es decir c |1 luego, m.c.d. (a′b′, a′ + b′) = 1 y, por tanto, a′ · b′ = 221 a′ + b′ = 30 } =⇒ a′(30− a′) = 221 =⇒ a′2 − 30a′ + 221 = 0 =⇒ a′ = 17 ó a′ = 13 Consecuentemente, las opciones posibles son: 1. a′ = 17, b′ = 13 2. a′ = 13, b′ = 17 en cualquiera de los dos casos es a′ + b′ = 30, luego da′ + db′ = 240 =⇒ d(a′ + b′) = 240 =⇒ d · 30 = 240 =⇒ d = 8 de donde resultan las soluciones: 312 Matemática Discreta Francisco José González Gutiérrez 1. Para a′ = 17 y b′ = 13 a = d · a′ =⇒ a = 8 · 17 =⇒ a = 136 b = d · b′ =⇒ b = 8 · 13 =⇒ b = 104 2. Para a′ = 13 y b′ = 17 a = d · a′ =⇒ a = 8 · 13 =⇒ a = 104 b = d · b′ =⇒ b = 8 · 17 =⇒ b = 136 de aqúı que los números buscados sean 104 y 136.  Ejemplo 10.46 Determinar dos números naturales sabiendo que su mı́nimo común múltiplo es 360 y la suma de sus cuadrados 5409. Solución Sean a y b los números a determinar, entonces m.c.m. (a, b) = 360 y a2 + b2 = 5409 Pues bien, sea d el máximo común divisor de a y b y sean a′ = a d y b′ = b d entonces, m.c.d. (a, b) ·m.c.m. (a, b) = a · b =⇒ d · 360 = a · b =⇒ d · 360 = a′db′d =⇒ d2a′2b′2 = 3602 por otra parte, a2 + b2 = 5409 =⇒ a′2d2 + b′2d2 = 5409 =⇒ d2(a′2 + b′2) = 5409 de aqúı que d2a′2b′2 = 3602 d2(a′2 + b′2) = 5409 } =⇒ a ′2 · b′2 a′2 + b′2 = 3602 5409 =⇒ a ′2 · b′2 a′2 + b′2 = 3602 9 5409 9 =⇒ a ′2 · b′2 a′2 + b′2 = 1202 601 =⇒ { a′b′ = 120 a′2 + b′2 = 601 =⇒ { 2a′b′ = 240 a′2 + b′2 = 601 {sumando y restando ambas ecuaciones} =⇒ { (a′ + b′)2 = 841 (a′ − b′)2 = 361 =⇒ { a′ + b′ = 29 a′ − b′ = 19 =⇒ { a′ = 24 b′ = 5 313 Universidad de Cádiz Departamento de Matemáticas y como da′b′ = 360 tendremos que d · 24 · 5 = 360 =⇒ d = 3 consecuentemente, los números pedidos son a = d · a′ = 3 · 24 = 72 b = d · b′ = 3 · 5 = 15  314
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved