Exercices de physique mathématiques 4 - correction, Exercices de Physique Mathématiques
Eleonore_sa
Eleonore_sa12 May 2014

Exercices de physique mathématiques 4 - correction, Exercices de Physique Mathématiques

PDF (197.8 KB)
2 pages
1000+Numéro de visites
Description
Exercices de physique mathématiques sur la détermination de la viscosité d'une huile moteur - correction.Les principaux thèmes abordés sont les suivants:le référentiel du laboratoire,Le pas d'itération,Détermination de l...
20points
Points de téléchargement necessaire pour télécharger
ce document
Télécharger le document
Exercice 2 chute d'une balle de ping pong Correction

Amérique du nord 2003 II. Chute d'une balle de ping-pong (5,5 pts) Correction

1) Les valeurs du poids et de la poussée d'Archimède sont indépendantes de la durée de chute.

Par contre la valeur de la force de frottement est proportionnelle au carré de la vitesse.

A l'instant initial, la vitesse est nulle donc F = 0, ceci correspond au schéma de Benoît.

En comparant la longueur du vecteur F , on constate que F a une valeur F plus grande sur le schéma

d'Amélie par rapport au schéma d'Adrien. Donc le schéma d'Amélie correspond à un temps de chute plus

grand et celui d'Adrien correspond à un temps de chute quelconque.

2) P = mballe.g

3 4

. . . . . 3

fluide air S air m g V g r      .g

3

3P

4 . .

balle

air

m

r  

P 

32

3

)10.9,1(3,14

10.3,23 



 = 62 ATTENTION AUX UNITÉS

Benoît a raison, la poussée d'Archimède a une valeur 62 fois plus faible que la valeur du poids.

3) Système : balle de ping-pong Référentiel : le sol (terrestre supposé galiléen)

Inventaire des forces : poids et frottement de l'air (poussée d'Archimède négligée face à ces 2 forces)

D'après la deuxième loi de Newton: amFP .

Par projection sur un axe vertical orienté positivement vers le bas :

m.g  F = m vd

dt équation (1)

4) à t = 0, v = 0 donc la courbe 2 représente v(t) et la courbe 1 représente a(t).

5) Pour t > 2 s, alors v = vlim = 8,0 m.s1

Pour t > 2s, les forces de frottement compensent la force poids donc a = 0 = vd

dt

L'équation (1) devient m.g  F = 0

m.g – k.vlim² = 0

m.g = k.vlim2

k = lim

m.g

v ²

k = 32,3.10 9,8

8,0²

  = 3,5.104

Retrouvons l'équation (2) :

d'après l'équation (1) m.g  F = m vd

dt

m.g  k.v² = m vd

dt

g  k

.v² m

= vd

dt

En remplaçant k par son expression: g  lim

m.g .v²

m.v ² =

vd

dt

vd

dt = g –

lim

g .v²

v ²

vd

dt = 9,8 

9,8

8,0² .v² = 9,8 – 0,15.v² équation (2)

6) kt = 0,22. .r²

kt = 0,22 1,3(1,9.102)² = 3,2.104. Pour k on a obtenu k = 3,5.10–4, les valeurs de k et kt sont assez proches.

7)a)  temps caractéristique: La tangente à la courbe représentative de v = f(t), en t = 0 s, coupe l'asymptote

horizontale d'équation v = vlim pour t = .

On lit  = 0,8 s. Le choix du pas d’itération est bon car t << .

7)b) Calcul de a1 :

D'après l'équation (2) vd

dt = 9,8 – 0,15.v²

a1 =

1

v

t

d

dt

     

= 9,8 – 0,15.v1²

a1 = 9,8 – 0,15  (0,49)²

a1 = 9,76 m.s–2

Calcul de v2 :

En considérant vd

dt

v

t

  

v = v2  v1 = (9,8  0,15.v1²).t

v2 = (9,8  0,15.v1²).t + v1

v2 = (9,8  0,15  0,49²)  0,05 + 0,49

v2 = 0,98 m.s–1

Calcul de a3 :

a3 =

3

v

t

d

dt

     

= 9,8 – 0,15.v3²

a3 = 9,8  0,15(1,4610227)²

a3 = 9,48 m.s2

7)c) Amélie : "Mais tous ces chiffres après la virgule, ça me fait bien rire !"

On ne peut conserver autant de chiffres significatifs car pour g on a seulement 2 chiffres significatifs.

8)a) On obtient pour la vitesse des courbes théorique (courbe 3) et expérimentale (courbe 2) très similaires.

Par contre pour l’accélération, le modèle théorique (Euler) donne un accélération non nulle pour t > 2s.

8)b) Il faudrait diminuer la valeur du pas t pour conclure sur la validité du modèle utilisé pour F.

8)c) On peut utiliser comme modèle une force de frottement proportionnelle à la vitesse.

L'équation 2 devient : dv/dt = 9,8  K.v avec K différent de k.

a1 = 9,76

v2 = 0,98

a3 = 9,48

t0 =

t1 =

t2 =

t3 =

t4 =

t5 =

commentaires (0)
Aucun commentaire n'a été pas fait
Écrire ton premier commentaire
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Docsity n'est pas optimisée pour le navigateur que vous utilisez. Passez à Google Chrome, Firefox, Internet Explorer ou Safari 9+! Téléchargez Google Chrome