Exercices sur les concepts de physique 10, Exercices de Concepts de physique
Eleonore_sa
Eleonore_sa8 May 2014

Exercices sur les concepts de physique 10, Exercices de Concepts de physique

PDF (255.3 KB)
3 pages
115Numéro de visites
Description
Exercices de physique sur l'étude d’un oscillateur mécanique. Les principaux thèmes abordés sont les suivants: l’excellente animation de G.Tulloue, Deuxième loi de Newton appliquéeLa période propre de l’oscillateur, Les ...
20points
Points de téléchargement necessaire pour télécharger
ce document
Télécharger le document
EXERCICE I ÉTUDE EXPERIMENTALE D’UN OSCILLATEUR MECANIQUE (5 points)

EXERCICE I : ÉTUDE EXPERIMENTALE D’UN OSCILLATEUR MECANIQUE (5 points) Réunion 2009

Au cours d’une séance de travaux pratiques des élèves étudient le mouvement, sur une table horizontale, d’un mobile autoporteur de masse m = 0,714 kg relié à deux ressorts à spires non jointives et de masses négligeables. Le mobile est initialement écarté de sa position d’équilibre et lancé avec une vitesse initiale V0. Le mouvement du mobile est filmé par les élèves. Les positions successives du centre d’inertie G du mobile sont repérées à l’aide d’un logiciel de pointage à partir de la date du lancement t0. Elles sont repérées sur un axe x’x horizontal, orienté de gauche à droite. L’origine O de l’axe coïncide avec la position du centre d’inertie G lorsque le mobile est au repos.

L’intervalle de temps séparant deux positions successives est = 80 ms. Le schéma ci-dessous représente, à une date t quelconque, le dispositif expérimental utilisé ainsi que l’axe x’x.

On admettra que ce dispositif; constitué d’une masse et de deux ressorts, est équivalent à celui constitué de la même masse et d’un seul ressort de constante de raideur notée K. 1.Une première exploitation du pointage Le tableau suivant donne les abscisses xG des positions successives du centre d’inertie dumobile entre les dates t14 et t21.

Position 14 15 16 17 18 19 20 21

Date t (en s)

1,12 1,20 1,28 1,36 1,44 1,52 1,60 1,68

Abscisse xG (en m)

– 0,119 – 0,112 – 0,096 – 0,073 – 0,046 – 0,015 0,017 0,048

1.1. En exploitant numériquement les données du tableau précédent, un élève calcule la

valeur de la vitesse à la date t17. Il trouve 17G

V = 0,31 m.s-1. Calculer la valeur de la vitesse

19G V à la date t19.

1.2. Exprimer le vecteur accélération 18G

a du mobile au passage du point G18 en fonction

des vecteurs vitesses 17GV et 19GV et de l’intervalle de temps correspondant. Tous ces

vecteurs étant colinéaires, vérifier que la valeur de l’accélération à la date t18 est égale à 0,50 m.s-2.

1.3. La figure 1 fournie en ANNEXE À REMETTRE AVEC LA COPIE, représente le dispositif équivalent au dispositif expérimental (il ne comporte donc qu’un seul ressort de raideur K). Sur cette représentation, le ressort est comprimé. Les forces de frottements sont supposées négligeables. SUR LA FIGURE 1 DE L’ANNEXE À REMETTRE AVEC LA COPIE, représenter les trois forces qui s’exercent sur le mobile autoporteur sans considération d’échelle.

1.4. Parmi les propositions suivantes, choisir l’expression vectorielle de la force de rappel exercée par le ressort sur le mobile en fonction de l’abscisse xG du centre d’inertie.

. .GF K x i ou . .GF K x i 

1.5. 1.5.1. En projetant sur l’axe x’x la relation entre vecteurs traduisant la seconde loi de Newton appliquée sur le mobile, établir la relation entre K, m, x et ax (équation 1). 1.5.2. En reprenant les valeurs de l’abscisse et de l’accélération à la date t18, en déduire une estimation de la valeur numérique de la constante de raideur K du ressort équivalent. Donnée : m = 0,714 kg

2. La période propre de l’oscillateur L’équation horaire du mouvement est de la forme générale :

 G m 0 0

2 x t X cos( .t )

T

   

2.1. Nommer les deux grandeurs Xm et φ0. 2.2. Choisir l’expression correcte de la période propre parmi les suivantes. Justifier par une analyse dimensionnelle.

0

K T 2

m   0T 2 m K   0

m T 2

K  

2.3. Les élèves mesurent la période des oscillations. Ils trouvent T0 = 1,88 s. Déduire de cette mesure une nouvelle estimation de la valeur de K. Rappel: m = 0,714 kg

3. Les conditions initiales et l’énergie mécanique La figure 2 ci-dessous représente la courbe xG = f(t) obtenue par les élèves ainsi que le résultat de sa modélisation.

3.1. Vérifier à l’aide du résultat de la modélisation que l’abscisse 0G

x du centre d’inertie du

mobile à la date t0 = 0 s est égale à 10,6 cm. 3.2. Toujours en utilisant le résultat de la modélisation, montrer que l’expression de la vitesse VG en fonction du temps est donnée par :

VG(t)= – 0,401 sin (3,34 t – 0,488) (m.s-1)

3.3. Calculer la valeur de la vitesse initiale 0G

V = 0t

G

dt

dx

 

  

 communiquée au mobile.

Dans quel sens cette vitesse a-t-elle été communiquée ? 3.4. Soit Em l’énergie mécanique du système {Mobile+Ressort}. La masse du ressort est négligeable.

3.4.1. Donner l’expression de l’énergie mécanique Em en fonction de K, de m, de l’abscisse xG et de la vitesse VG du centre d’inertie du mobile. 3.4.2. La valeur de l’énergie mécanique à la date t17 pour laquelle VG17 = 0,31 m.s-1 est Em = 5,6.10-2 J. En utilisant le tableau de valeurs de la premièrepage , retrouver la valeur de la constante de raideur K.

3.4.3. L’énergie mécanique Em du système se conserve-t-elle sur la durée de l’enregistrement ? Justifier (aucun calcul n’est demandé).

ANNEXE

(à remettre avec la copie)

Résultat de la modélisation de la courbe xG = f(t):

xG (t) = a cos(bt + c) Avec a = 0,120 m b = 3,34 rad.s-1 c = - 0,488 rad

commentaires (0)
Aucun commentaire n'a été pas fait
Écrire ton premier commentaire
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Docsity n'est pas optimisée pour le navigateur que vous utilisez. Passez à Google Chrome, Firefox, Internet Explorer ou Safari 9+! Téléchargez Google Chrome