Exercitations de physique avancée 8, Exercices de Physique Avancée
Eleonore_sa
Eleonore_sa9 May 2014

Exercitations de physique avancée 8, Exercices de Physique Avancée

PDF (267.2 KB)
3 pages
318Numéro de visites
Description
Exercitations de physique avancée sur le ludion. Les principaux thèmes abordés sont les suivants: Principe de fonctionnement, Étude du mouvement du ludion.
20points
Points de téléchargement necessaire pour télécharger
ce document
Télécharger le document

Bac S 2012 Liban EXERCICE 2 : LE LUDION (5 points)

Le texte ci-dessous décrit le comportement d’un objet, communément appelé « ludion », plongé dans une colonne d’eau.

1. Principe de fonctionnement Au laboratoire, le ludion peut être réalisé à l’aide d’une bille (B) de verre de volume VB, symbolisant la figurine solide, placée dans un ballon de baudruche (A) fermé et imperméable, renfermant de l’air de volume variable VA ; le ludion a donc un volume variable VL tel que VL = VB + VA.

Il est placé dans une éprouvette cylindrique verticale (C), remplie d’eau sur une hauteur h très supérieure aux dimensions du ludion et fermée dans sa partie supérieure par une membrane souple imperméable (M).

Lorsque l’on n’appuie pas sur la membrane, le ludion est en équilibre en un point voisin de la surface de l’eau (figure 1). Lorsque l’on appuie sur la membrane (M), on constate que le ludion tombe au fond de l’éprouvette (figure 2). On se propose d’interpréter sommairement cette observation.

« Dans le liquide est une petite figure d’émail, soutenue par une boule de verre creuse qui contient de l’air et de l’eau… Cette boule est percée à sa partie inférieure, d’une petite ouverture par laquelle l’eau peut pénétrer ou sortir, selon que l’air intérieur de la boule est plus ou moins comprimé… Si l’on exerce avec la main une pression sur le piston comme le montre la figure, l’air qui est au-dessous se trouve comprimé et transmet la pression à l’eau du vase et à l’air qui est dans la boule… » Texte et illustration provenant de : A.GANOT, Traité de Physique, Ed. Ganot 18070

Données : - Masse du ludion (bille + ballon + air dans le ballon) : mL = 6,8 g - Volume de la bille : VB =1,8 cm3

- Masse volumique de l’eau : eau = 1000 kg.m-3 - Intensité de la pesanteur : g = 9,8 m.s-2 - Équation d’état des gaz parfaits : P.V = n.R.T ; dans cette équation P est en

Pascal (Pa), V en mètres cubes (m3) , n en moles (mol), T en Kelvin (K) et R est la constante des gaz parfaits (J.mol-1.K-1).

- La température est constante et égale à 298 K. 1.1. Étude de l’équilibre

1.1.1. Faire l’inventaire des forces s’exerçant sur le ludion lorsque celui-ci est en équilibre.

1.1.2. Exprimer la valeur des différentes forces en fonction de mL, eau, VL et g.

1.1.3. Soit 1A

V le volume d’air enfermé dans le ballon lorsque le ludion est en équilibre.

Établir son expression littérale en fonction de mL, eau et VB.

1.1.4. Calculer la valeur du volume d’air 1A

V .

1.2. Mise en mouvement du ludion L’eau est supposée incompressible. La compression de la membrane augmente globalement la pression de l’eau sur l’air enfermé dans le ludion.

1.2.1. En considérant l’air comme un gaz parfait, indiquer l’évolution du volume d’air contenu dans le ludion après compression de la membrane.

1.2.2. Justifier alors que le ludion entame un mouvement vertical vers le bas. 2. Étude du mouvement du ludion Pour étudier le mouvement du ludion, on se place dans le référentiel du laboratoire. On définit un axe vertical Oz dirigé vers le bas, le point O coïncide avec le centre d’inertie du ludion à l’instant de date t = 0 s (instant où le ludion débute sa descente) (figure 3). On suppose que le ludion est soumis à une force de

frottement s’exprimant sous la forme f k.v  où v est le vecteur vitesse du centre d’inertie de la bille et k le coefficient de frottement (k = 1,6×10–2 kg.s-1). On néglige la variation de pression avec la profondeur et on considère que la pression de l’eau sur l’air enfermé dans le ludion est la même quelle que soit l’ordonnée z du ludion.

Le volume d’air du ludion est désormais 2A

V = 4,8 cm3 et est supposé constant sur l’ensemble

de la descente.

2.1. Représenter, à l’aide d’un schéma, sans souci d’échelle, mais de façon cohérente, les

forces s’exerçant sur le ludion en mouvement.

2.2. En appliquant la deuxième loi de Newton dans le référentiel du laboratoire, établir l’équation différentielle du mouvement du ludion.

2.3. Montrer que l’équation précédente est de la forme dv

dt + A . v = B en donnant

l’expression de B en fonction de mL, eau, VB et 2A

V .

Vérifier que la constante B = 0,29 SI en précisant son unité.

2.4. On veut résoudre cette équation différentielle par une méthode numérique : la méthode d’Euler. Le tableau suivant est un extrait d’une feuille de calcul des valeurs de la vitesse (v) et de l’accélération (a) du ludion en fonction du temps (t). Il correspond aux valeurs A = 2,4 s-1 et B = 0,29 SI.

t (s) v (m.s–1) a (m.s–2)

0,00 0,00 0,29

0,10 0,03 0,22

0,20 0,05 0,17

0,30 0,07 0,13

0,40 0,08 a4

0,50 v5 0,07

0,60 0,10 0,06

2.4.1. Quelle est la valeur du pas d’itération Δt choisi ?2.4.2. Déterminer a4 et v5 en détaillant les calculs. 2.4.3. On a représenté sur le même graphique (figure 4) les courbes d’évolution de la vitesse

du ludion au cours du temps pendant sa descente obtenues, d’une part par pointage vidéo et traitement informatique, d’autre part par la méthode d’Euler.

Sans conclure sur la validité du modèle utilisé pour la force de frottement, quel serait l’intérêt de diminuer le pas d’itération utilisé par la méthode d’Euler ?

2.4.4. Déterminer l’expression de la vitesse limite en fonction de A et B puis sa valeur. Vérifier qu’elle est en accord avec l’expérience.

commentaires (0)
Aucun commentaire n'a été pas fait
Écrire ton premier commentaire
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Docsity n'est pas optimisée pour le navigateur que vous utilisez. Passez à Google Chrome, Firefox, Internet Explorer ou Safari 9+! Téléchargez Google Chrome