Travaux pratiques de physique avancée 13 - correction, Exercices de Physique Avancée
Eleonore_sa
Eleonore_sa9 May 2014

Travaux pratiques de physique avancée 13 - correction, Exercices de Physique Avancée

PDF (314.5 KB)
2 pages
108Numéro de visites
Description
Travaux pratiques de physique avancée sur un Rubik’s cube résolu à près de 4300 m d’altitude. - correction. Les principaux thèmes abordés sont les suivants: Étude des premières secondes de chute, Effet des forces de frot...
20points
Points de téléchargement necessaire pour télécharger
ce document
Télécharger le document

Exercice I : Un Rubik’s cube résolu à près de 4300 m d’altitude. (6,5 points) Bac S 2011 Amérique du sud Correction

1. Étude des premières secondes de chute 1.1.1. Sur le document 1, on mesure la distance G6G8 parcourue par le centre d’inertie G entre la date t = 6 s et à la date t = 8 s. On obtient G6G8 = 5,2 cm, en tenant compte de l’échelle G6G8 = 5,2 × 20 = 104 m.

v = 6 8

8 6

G G

t t

v = 104

2 = 52 m.s–1

On complète le document 2 en ajoutant le point de coordonnées (t = 7 s ; v = 52 m.s–1).

1.1.2. v représenté sur le document 1 par une flèche de 52

20 = 2,6 cm de longueur.

1.2.1. Système « parachutiste + bateau » Référentiel : Le sol, supposé galiléen.

D’après la deuxième loi de Newton .extF ma . Seule la force poids s’exerce sur le système, alors .P ma

1.2.2. . .mg ma

g a

Par projection suivant un axe Oz vertical orienté vers le bas, il vient g = az

az = z dv

dt alors vz(t) = az.t + Cte = g.t + Cte

vz(t = 0) = Cte = 0 car l’énoncé indique qu’à l’origine des dates la composante verticale de la vitesse est nulle.

Alors vz(t) = g.t et finalement v = ( )2zv t = g.t.

1.2.3. On trace la droite d’équation v = 9,8.t. 1.2.4. On relie les points afin de tracer la courbe représentant v = f(t). Elle s’éloigne de façon significative de la droite v = g.t au-delà d’environ 3 s. On peut négliger les frottements pendant environ les trois premières secondes de la chute.

v

2. Effet des forces de frottement

2.1. D’après la deuxième loi de Newton : .F P ma 1

2.2.1.dv

a dt

 or v Cte alors a  0 .

2.2.2. D’après 2.1. et 2.2.1., on obtient F P 1 0 .

2.2.3.F P 1

F1 = P

k1.v 21 = m.g

v 21 = .m g

k1

v1 = .m g

k1 en ne retenant que la solution positive.

v1 = ,

,

75 9 8

0 165

 = 67 m.s–1 on vérifie cette valeur sur la courbe 1, elle correspond au premier pallier

de vitesse. 2.2.4. L’expression de la force de frottement montre qu’elle dépend de la surface présentée face à l’air lors de la chute. Lorsque M.Fichte largue son bateau, il diminue cette surface et réduit alors les frottements ; ce qui conduit à l’augmentation de sa vitesse. 3. Étude énergétique 3.1.E1 = ½ .m.v² + m.g.h, comme v = 0 il vient E1 = m.g.hE1 = 75 × 9,8 × 4300 = 3,2×106 J 3.2.E2 = ½ .m.v² + m.g.h E2 = 0,50 × 75 × 66,7² + 75 ×9,8 × 2200 = 1,8×106 J 3.3. Une partie de l’énergie mécanique a été dissipée sous forme de chaleur en raison des frottements avec l’air. 3.4.1. En l’absence d’atmosphère, il n’y aurait pas de frottements sur le parachute. Le parachutiste ne pourrait pas être freiné. 3.4.2. En l’absence de frottements, l’énergie mécanique du système serait constante. 3.4.3. Comme calculée en 3.1., l’énergie mécanique, à l’altitude de 4300 m est égale à E1 = 3,2×106 J. Elle conserve cette valeur à l’altitude 2200 m. E1 = m.g.h + ½. m. v² E1m.g.h = ½. m. v²

. ²1 2

2  E

g h v m

v = .1 2

2 E

g h m

v = ,

, 62 3 2 10

2 9 81 2200 75

    

v = 2,1×102 m.s–1 3.5. Dans le cas d’une chute libre au sens du physicien, la vitesse serait d’environ 205 m.s–1. En réalité, elle n’atteint que 66,7 m.s–1. Le terme « chute libre » n’est pas adapté à la situation réelle.

commentaires (0)
Aucun commentaire n'a été pas fait
Écrire ton premier commentaire
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Docsity n'est pas optimisée pour le navigateur que vous utilisez. Passez à Google Chrome, Firefox, Internet Explorer ou Safari 9+! Téléchargez Google Chrome