Travaux pratiques - physisque physiques 15, Exercices de Analyse circuit électriques
Eleonore_sa
Eleonore_sa30 April 2014

Travaux pratiques - physisque physiques 15, Exercices de Analyse circuit électriques

PDF (235.0 KB)
5 pages
195Numéro de visites
Description
Travaux pratiques de physisque physiques sur la radioactivité tellurique. Les principaux thèmes abordés sont les suivants: Le compteur Geiger Müller, Le radon « pollueur » des sous-sols, Évolution temporelle.
20points
Points de téléchargement necessaire pour télécharger
ce document
Télécharger le document
Aperçu3 pages / 5
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Aperçu avant impression terminé
Chercher dans l'extrait du document
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Aperçu avant impression terminé
Chercher dans l'extrait du document
EXERCICE II Radioactivité tellurique 6,5 pts

Nouvelle Calédonie Novembre 2007 EXERCICE II. RADIOACTIVITÉ TELLURIQUE (6,5 points)

Calculatrice interdite Les parties 1, 2 et 3 de cet exercice sont indépendantes. 1. Le compteur Geiger Müller

Le tube compteur Geiger Müller, mis au point en 1928, est aujourd'hui encore un appareil indispensable pour la mise en évidence d'un rayonnement radioactif. Il est constitué d'un tube cylindrique rempli d'argon sous faible pression, dans lequel un fil conducteur est tendu le long de son axe (le schéma est représenté sur la figure 6a). Une tension U de quelques centaines de volts est appliquée en permanence entre la paroi cylindrique du tube, qui sert de cathode, et le fil, qui joue le rôle de l’anode via un conducteur ohmique de résistance R.

1.1. Circuit RC Le tube constitué de la paroi extérieure et du fil central, rempli d’argon, soumis à la tension U = 500 V, forme un condensateur de forme cylindrique, de faible capacité C = 1,010 –11F. L’association du tube et du conducteur ohmique constitue donc un circuit RC série schématisé sur la figure 6b ci-dessous. Par souci de simplification, le tube est modélisé par un condensateur plan.

Figure 6b

1.1.1. Sur le schéma électrique du circuit reproduit en ANNEXE, représenter la flèche tension uC aux bornes du condensateur en respectant la convention récepteur, q désignant la charge du condensateur. 1.1.2. Rappeler l’expression de l’intensité i du courant électrique en fonction de la charge q. En déduire la valeur de l’intensité I du courant, une fois que le condensateur a atteint sa charge maximale Q. Justifier. 1.1.3. Calculer la valeur de la charge Q du condensateur dans ces conditions. 1.1.4. En raisonnant sur le schéma simplifié de l’ANNEXE , indiquer par des signes (+) et (-), la répartition des charges sur les armatures du condensateur lorsqu’il est chargé.

condensateur

A

B

conducteur ohmique

générateur haute tension continue

+

-

armature représentant

le fil

armature représentant la paroi du

tube

+

U

R conducteur ohmique

générateur haute tension

continue

signal vers compteur d'impulsions

fil (anode)

paroi du tube (cathode)

source radioactive

Figure 6a

1.2. Impulsion de décharge

Dans le tube, une particule émise par désintégration radioactive ionise des atomes d’argon sur sa trajectoire. Chaque atome ionisé donne naissance à deux particules : un ion argon et un électron. Les ions positifs dérivent vers la paroi du tube. Les électrons sont accélérés vers le fil et provoquent par collisions successives d’autres ionisations. Il en résulte alors une brève diminution de tension entre les électrodes du tube, appelée « impulsion de décharge ». Un compteur enregistre le nombre d’impulsions relevées pendant une durée de comptage donnée.

1.2.1. La durée moyenne d’une impulsion de décharge consécutive à la détection d’une

particule est t = 0,10 ms. Pour un bon fonctionnement du compteur Geiger Müller, la valeur de

la constante de temps du circuit RC vérifie la condition : = 2.t. Calculer la valeur de la résistance R. 1.2.2. Montrer que la charge de l’anode diminue pendant la traversée de la particule. 1.2.3. Expliquer l’affirmation du texte : « Il en résulte alors une brève diminution de tension entre les électrodes du tube ». 1.2.4. Pour modéliser le phénomène, on considère que le passage de la particule dans le tube engendre N électrons et N ions argon. Montrer que la diminution de tension entre les bornes du condensateur est :

uC = .

N e

C avec e: charge élémentaire.

2. Le Radon « pollueur » des sous-sols

Les roches de l’écorce terrestre renferment de l’uranium 238 radioactif. Après plusieurs désintégrations successives, il se forme du radon 222, principal responsable de la radioactivité dite tellurique. Ce radon s’échappe, à l’état gazeux, des roches et s’infiltre dans les fissures des fondations des bâtiments et s’accumule dans les locaux non ventilés.

2.1. Famille de l’uranium 238 Les descendants du radon 222 appartiennent à la famille décrite dans la figure 7 ci-dessous : chaque flèche pleine désigne une désintégration, les flèches en pointillés représentent une succession de désintégrations.

uranium 238

92U radium 226

88Ra

plomb 214

82Pb

bismuth 214

83Bi

polonium 214

84Po

plomb 210

82Pb

radon 222

86Rn polonium 218

84Po

plomb 206

82Pb

bismuth 210

83Bi

t1/2 = 3,1 min

t1/2 = 27 min  –

 t1/2 = 160 µs

t1/2 = 3,8 j

t1/2 = 22 ans  –

 – t1/2 = 20 min

t1/2 = 4,5 milliards d'années

gaz radon

t1/2 = 1600 ans

plomb non radioactif

matériaux de la croûte terrestre

Figure 7

2.1.1. Indiquer la composition du noyau de radon 222. 2.1.2 Que peut-on dire des noyaux représentés sur une même verticale de la figure 7 ? Justifier. 2.1.3. Écrire l’équation de désintégration du radon 222 et celle du plomb 214. 2.1.4. Quel est le nom et la signification de la grandeur t1/2 reportée sur la flèche de désintégration de chaque noyau de la figure 7 ? Donner sa valeur pour le polonium 218.

2.2. Détection par le compteur

Un aspirateur muni d’un filtre permet de récupérer des poussières de l’air ambiant. On étudie alors l’évolution temporelle de la radioactivité de ces poussières à l’aide d’un compteur Geiger Müller. L’activité mesurée est celle des noyaux descendants du radon 222, fixés sur des microparticules piégées dans le filtre.

L’objectif de cette partie est de montrer que deux noyaux descendants de la famille de l’uranium 238 sont principalement détectés par le compteur Geiger Müller.

2.2.1. On transporte le filtre et on le dépose dans le détecteur une dizaine de minutes après l’aspiration. Par combien est approximativement divisé le nombre de noyaux de polonium 218 entre la fin de l’aspiration et le début des mesures dans le détecteur : par 2, 4, 6 ou 8 ? Justifier. 2.2.2. On admet que l’activité du polonium 218 dans le local aspiré, proportionnelle au nombre de noyaux 218Po, est comparable à celle des autres noyaux. En déduire que la contribution du polonium 218 à la radioactivité de l’échantillon introduit plus tard dans le détecteur peut être négligée. 2.2.3. Ayant pris soin de ne pas soulever les poussières déposées depuis très longtemps dans le local où l’air ambiant est aspiré, on admettra que le plomb 210 ne participe pas à la radioactivité de l’échantillon recueilli, ni ses descendants.

En conclusion, quels sont les seuls noyaux radioactifs émetteurs  – qui contribuent à l’activité mesurée par le détecteur ?

3. Évolution temporelle On se propose d’étudier l’évolution temporelle d’une population de noyaux radioactifs de plomb 214. 3.1. Loi de décroissance

3.1.1. Rappeler l’expression mathématique de l’évolution temporelle du nombre de noyaux N

d’une population de noyaux de constante radioactive . 3.1.2. On rappelle que le nombre de désintégrations par seconde d’une population de noyaux

radioactifs est définie par l’activité A (en becquerels Bq) : A(t) = ( )

dN t

dt

En déduire que la relation entre activité et nombre de noyaux est : A(t) = + .N(t).

3.1.3. En utilisant la figure 8, comparer graphiquement et sans calcul l’activité de la population de plomb 214 aux instants de dates t1 = 25 min et t2 = 50 min. Justifier la réponse.

3.1.4. En utilisant la figure 8, comparer graphiquement et sans calcul l’activité de 0 2

N noyaux de

plomb 214 à celle du même nombre de noyaux de bismuth 214. En déduire lequel des deux radioéléments a la constante radioactive la plus grande.

3.2. Le descendant (noyau fils) du noyau de plomb 214 est le noyau de bismuth 214, lui même

émetteur –. On a tracé sur la figure 9 ci-dessous les courbes représentant l’évolution temporelle des nombres de noyaux d’un même échantillon renfermant à la fois des noyaux de plomb 214 et des noyaux fils de bismuth 214 descendants des noyaux de plomb qui se désintègrent.

3.2.1. Identifier les deux noyaux (plomb 214 et bismuth 214) correspondant à chacune des deux courbes (a) et (b) figure 9. Justifier ce choix en décrivant qualitativement l’évolution temporelle de la courbe (b). 3.2.2. Indiquer, en justifiant la réponse, quelle est l’équation différentielle qui régit dans ces conditions l’évolution temporelle du nombre de noyaux de bismuth 214.

(1) .Bi Bi Bi d

dt

  N

N (2) . .Bi Pb Pb Bi Bi d

dt

    N

N N (3) .Bi Pb Pb d

dt

  N

N

nombre de noyaux N

t en min

plomb 214 bismuth 214

0 50 100 150 200

N0

0

Figure 8

nombre de noyaux

t (min) 0

Figure 9

(a)

(b)

Évolution temporelle des nombres de noyaux de plomb 214 et de son descendant le bismuth 214

ANNEXE À RENDRE AGRAFÉE AVEC LA COPIE

ANNEXE DE L’EXERCICE II

Question 1.1.1. :

C

A

B

conducteur ohmique

générateur haute tension continue

+

-

i

q

U

R

condensateur

commentaires (0)
Aucun commentaire n'a été pas fait
Écrire ton premier commentaire
Ceci c'est un aperçu avant impression
Chercher dans l'extrait du document
Docsity n'est pas optimisée pour le navigateur que vous utilisez. Passez à Google Chrome, Firefox, Internet Explorer ou Safari 9+! Téléchargez Google Chrome