Statystyka opisowa - Notatki - Statystyka, Notatki'z Statystyka. Opole University
Aleksy
Aleksy21 March 2013

Statystyka opisowa - Notatki - Statystyka, Notatki'z Statystyka. Opole University

PDF (139.3 KB)
11 strona
1000+Liczba odwiedzin
Opis
W notatkach wyeksponowane są tematy z zakresu statystyki: statystyka opisowa.
20punkty
Punkty pobierania niezbędne do pobrania
tego dokumentu
Pobierz dokument
Podgląd3 strony / 11
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.

str. 1

Statystyka opisowa Statystyczne metody badania prawidłowości w zakresie struktury zjawisk masowych (10.X)Jak pamiętamy są cztery rodzaje prawidłowości statystycznej:

1) prawidłowość w zakresie struktury 2) prawidłowość w zakresie dynamiki 3) prawidłowość w zakresie współzależności w czasie 4) prawidłowość w zakresie współzależności w przestrzeni

Badanie prawidłowości w zakresie struktury zjawisk masowych możemy w skrócie nazwać analizą struktury. Podstawowymi formami prezentacji danych statystycznych w analizie struktury są szeregi szczegółowe i szeregi rozdzielne. Szeregi szczegółowe wykorzystujemy wówczas, gdy badanie dotyczy małych zbiorowości statystycznych (kilka, kilkanaście jednostek). Natomiast wraz ze wzrostem liczby jednostek zbiorowości wskazane jest prezentowanie materiału statystycznego w postaci szeregów rozdzielnych. Szereg szczegółowy to najstarszy szereg statystyczny. Tworzą go wartości jednostek uporządkowane od wartości najmniejszych do największych. Nie mówimy więc tu o tabelarycznej formie prezentacji danych (bo jest tylko jeden wiersz). W szeregu rozdzielczym mamy dwie kolumny: warianty badanych cech oraz liczby jednostek. Jest więc on tabelaryczną formą prezentacji danych. Widoczny jest rozkład badanej cechy w danej zbiorowości. Istnieją też graficzne formy prezentacji danych. Do liniowych należą wielobok liczebności zwykły i skumulowany. Do powierzchniowych należą histogram zwykły i skumulowany. Formy te są graficznym przedstawieniem szeregów rozdzielczych przedziałowych. Jeżeli mamy szereg rozdzielczy punktowy, to stosujemy diagram punktowy. Wybór szeregu punktowego i przedziałowego nie zależy od rodzaju badanej cechy (skokowego i ciągłego), choć w pewien sposób są one powiązane. Jednak głównie opieramy się na liczbie wariantów danej cechy. Typy rozkładów empirycznych w zbiorowości statystycznej. Rozkładem empirycznym badanej cechy nazywamy przyporządkowanie kolejnym wartościom cechy, odpowiadającym im liczebnościom. Szereg rozdzielczy dla cechy ilościowej to właśnie tabelaryczna forma przedstawienia rozkładu empirycznego badanej cechy zbiorowości statystycznej. Rodzaje (cechy) rozkładu empirycznego:

1) ze względu na liczbę punktów ekstremalnych; wyróżniamy jednomodalne (jedna wartość dominująca) i wielomodalne (kilka wartości dominujących)

r. jednomodalny r. trzymodalny

szeregi rozdzielcze

dla cech ilościowych

dla cech jakościowych

przedziałowe

punktowe

n

x

n

x

str. 2

Wielomodalność jest często spotykana. Wiele zjawisk ma rozkład wielomodalny, np. staż pracy przyjmuje postać wykresu o wyraźnych dwóch modach (jest to taka pewna prawidłowość tej cechy). 2) Ze względu na rodzaj zmienności; wyróżniamy tu rozkłady empiryczne

a) symetryczne (mają oś symetrii a po obu jej stronach rozkład ilości jest taki sam); rozkłady symetryczne można podzielić na normalne, spłaszczone i wysmukłe

r. normalny r. wysmukły r. spłaszczony b) asymetryczne (nie mają osi symetrii); dzielimy je na rozkłady o asymetrii lewostronnej i

prawostronnej (przy czym każda z nich może być skrajna i umiarkowana) Czasami nie warto liczyć średniej np. przy skrajnej asymetrii, wtedy trzeba odpowiednio dobrać parametry.

asymetria prawostronna asymetria lewostronna umiarkowana umiarkowana

asymetria prawostronna asymetria lewostronna skrajna skrajna

c) równomierne i u-kształtne

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

str. 3

Parametry opisowe rozkładu wartości cechy zbiorowości statystycznej Parametrem opisowym (charakterystyką, miarą) nazywamy liczbę, która w sposób syntetyczny określa właściwości badanych zbiorowości statystycznych. Parametry opisowe umożliwiają:

1) sumaryczny opis rozkładu cechy w zbiorowości statystycznej 2) porównanie

a) dwóch lub więcej zbiorowości pod względem rozkładu tej samej cechy b) rozkładów dwóch lub więcej cech w ramach jednej zbiorowości

Zapoznajmy się teraz z klasyfikacją parametrów opisowych. Parametry opisowe w analizie struktury dzielimy na pięć grup w zależności od tego, czego dane parametry są miarą:

1) tendencji centralnej 2) zróżnicowania 3) asymetrii 4) spłaszczenia 5) koncentracji

W zależności od tego, jakie mamy rozkłady empiryczne, wybieramy odpowiednie miary parametrów opisowych, np. prze rozkładzie symetrycznym nie liczymy asymetrii. Wszystkie parametry opisowe dzielimy na:

a) klasyczne - są wypadkową wartości przyjmowanych przez wszystkie jednostki badanej zbiorowości

statystycznej - w ramach danej grupy parametrów wykluczają się wzajemnie - przy ich obliczaniu nie jest konieczne porządkowanie jednostek

b) pozycyjne - są wyznaczane na podstawie wartości jednej lub kilku jednostek zajmujących szczególną

pozycję w badanej zbiorowości statystycznej - w ramach danej grupy parametrów uzupełniają się wzajemnie i uzupełniają miary klasyczne - przy ich obliczaniu konieczne jest uporządkowanie jednostek według wartości badanej cechy

(zazwyczaj od najmniejszych do największych) Parametry opisowe możemy też podzielić w inny sposób. Na parametry:

a) absolutne - miary mianowane, wyrażone w takich jednostkach, w jakich ujęta jest badana cecha b) względne (stosunkowe) – niemianowane, najczęściej wyrażone w procentach

Miary tendencji centralnej charakteryzują poziom wartości badanej cechy w zbiorowości statystycznej. Wszystkie miary w tej grupie to wielkości absolutne. I. Miary klasyczne

x - średnia arytmetyczna x H - średnia harmoniczna x CH - średnia chronologiczna x G - średnia geometryczna Dwie ostatnie średnie wykorzystywane są przede wszystkim w analizie dynamiki.

Podstawową miarą jest x . Informuje ona jaka byłaby wartość cechy, gdyby wszystkie jednostki badanej zbiorowości były jednakowe, np. „przeciętny staż pracy wynosi 15 lat” jest równoważne ze stwierdzeniem „gdyby każdy z pracowników miałby mieć ten sam staż pracy to byłoby to 15 lat”. Sposób obliczania średniej arytmetycznej zależy od formy prezentacji danych: dla szeregu szczegółowego obliczamy średnią arytmetyczną zwykłą, natomiast dla szeregu rozdzielczego średnią arytmetyczną ważoną (wagami są liczebności).

str. 4

Warunki stosowania średniej arytmetycznej: 1) konieczna jest znajomość wszystkich wartości badanej cechy 2) zbiorowość powinna być jednorodna z punktu widzenia badanej cechy (czyli rozkład powinien się

charakteryzować niewielkim zróżnicowaniem i słabą asymetrią) Otwarte przedziały klasowe:  poniżej 20  20-29  30-39  40 i więcej

Sugerują one, że nie można policzyć x , ale są dwa wyjątki: a) Przy otwartych przedziałach klasowych można obliczyć x gdy są podstawy do domknięcia otwartych

przedziałów klasowych, czyli liczebność w tych przedziałach jest nie większa niż 5% ogólnej liczebności badanej zbiorowości.

b) Gdy nie ma przesłanek do domknięcia przedziałów klasowych, ale liczebność w tych przedziałach jest nie większa niż 1% ogólnej liczebności zbiorowości, można te przedziały pominąć.

Domknięcie powyższych przedziałów klasowych:  10-19  20-29  30-39  40-49 (rozpiętość ostatniego taka jak sąsiedniego!)

x nie powinno się liczyć przy skrajnej asymetrii, dla rozkładu wielomodalnego lub u-kształtnego, bo traci ona sens poznawczy. Zapoznać się z własnościami średniej arytmetycznej (zwłaszcza tej że średnia arytmetyczna musi się mieścić między xmin i xmax)

Średnia harmoniczna ( x H) powinna być stosowana wówczas gdy wartości badanej cechy wyrażają stosunek między dwoma zjawiskami powiązanymi ze sobą w logiczny sposób, tzn. gdy badana cecha jest wskaźnikiem natężenia np. gęstość zaludnienia, pracochłonność produkcji, wydajność (wielkość produkcji : ilość zatrudnionych), koszt jednostkowy, współczynnik rentowności (ogólnie ujmując wszędzie gdzie mamy iloraz).

z yx

Wybór pomiędzy x a x H zależy od tego, czy mamy dane dotyczące wielkości w liczniku czy mianowniku. Jeśli znamy x i y to obliczamy średnią harmoniczną, jeśli x i z to arytmetyczną. Jako że wszystkie te miary tendencji centralnej są miarami klasycznymi, to albo liczymy średnią arytmetyczną albo harmoniczną (wykluczają się wzajemnie). Sposób obliczania średnich zależy od sposobu prezentacji danych. Obie średnie są bardzo wrażliwe na wartości skrajne, mianowane. II. Miary pozycyjne Dominanta (D) oraz kwantyle. Dominanta to wartość która występuje najczęściej w badanej zbiorowości. Sposób wyznaczania dominanty zależy od formy prezentowania danych statystycznych. Dla szeregu szczegółowego i rozdzielnego punktowego, dominantą jest ta wartość cechy, której odpowiada największa liczebność. Dla rozdzielnego przedziałowego dominantę można wyznaczyć w sposób przybliżony – graficznie (wykorzystując histogram zwykły) oraz analitycznie (za pomocą wzoru interpolacyjnego), Warunki stosowania dominanty. Należy sprawdzić czy:

1) rozkład badanej cechy jest jednomodalny 2) rozpiętość przedziałów klasowych jest jednakowa (gdy przedziały nie są równe, to można

zastosować odpowiednie wzorki) 3) rozkład badanej cechy charakteryzuje się umiarkowaną asymetrią (ale nie jest to najważniejszy

warunek)

str. 5

Miary zmienności, spłaszczenia i asymetrii (24.X) Momenty zwykłe i centralne. Momentem r-tego rzędu cechy x nazywamy średnią arytmetyczną odchyleń poszczególnych wartości cechy od pewnej stałej x0 podniesionych do potęgi r-tej.

n

xx M

n

i

r i

r

 

  1

0 )(

W zależności od tego, co podstawimy za nasze x0 wyróżniamy:

momenty zwykłe (gdy x0 = 0) momenty centralne (gdy x0 = x )

n

x m

n

i

r i

r

  1 ; r=1,2,3...

n

xx n

i

r i

r

 

  1

)(  ; r=1,2,3...

Wypiszmy sobie różne charakterystyczne rzędy momentów:

x n x

m i  1 jest to znana nam średnia arytmetyczna

2 2

2 xn x

m i   jest to znana nam średnia arytmetyczna kwadratów cechy

0 )(

1  

  n

xxi to jest zero na podstawie własności średniej arytmetycznej

)( )( 2

2

2 xSn xxi  

  jest to tzw. wariancja (moment centralny drugiego rzędu)

n xxi 

3

3

)(  moment ten będzie wykorzystywany do mierzenia asymetrii

n xxi 

4

4

)(  a ten do mierzenia spłaszczenia

Tak więc w analizie struktury wykorzystujemy momenty ale pod innymi nazwami. Aby je obliczyć musimy mieć dane szczegółowe. Gdy mamy szeregi rozdzielcze to musimy skorzystać z momentów ważonych. Tak jak średnia arytmetyczna może być zwykła i ważona, tak momenty również. Aby odróżnić momenty ważone od zwykłych, gdy mamy do czynienia z reprezentacją danych w postaci szeregów rozdzielczych o k wariantach, wzór na moment zapisujemy w następującej postaci:

n

nxx M

k

i i

r i

r

 

  1

0 )(

(!) Każdy moment centralny można zapisać jako sumę momentów zwykłych:

2

122 )(mm  222 )()( xxxS 

str. 6

III. Miary zmienności (zróżnicowania, rozproszenia, dyspersji) Miary z tej grupy pozwalają określić jakie jest zróżnicowanie wartości cechy w badanej zbiorowości statystycznej. Dają odpowiedź na dwa pytania i z tego względu właśnie dzielą się na dwie grupy:

1) miary absolutne – odpowiadają na pytanie o ile średnio różnią się wartości cechy przyjmowane przez poszczególne jednostki zbiorowości od swej przeciętnej

2) miary stosunkowe – odpowiadają na pytanie jak wielkie są to różnice w stosunku do przeciętnej. Odchylenia poszczególnych wartości cechy od przeciętnej powstają pod wpływem przyczyn ubocznych, dlatego też miary zmienności mierzą w przybliżeniu składnik przypadkowy. Natomiast składnik systematyczny mierzy średnia arytmetyczna (inaczej się ją więc interpretuje jako wartość wszystkich cech gdy działa tylko przyczyna główna). Podział miar zmienności:

absolutne stosunkowe

pozycyjne R,Q VQ

klasyczne S(x), d(x) VS ,Vd Pozycyjne absolutne Rozstęp (R), czyli tzw. empiryczny obszar zmienności, jest różnicą między największą i najmniejszą wartością cechy w badanej zbiorowości. Jest to miara bardzo prosta, mająca zarazem najmniejszą wartość poznawczą, gdyż nie daje informacji o zróżnicowaniu poszczególnych wartości cechy w zbiorowości. Odchylenie ćwiartkowe (Q) określa o ile średnio różnią się wartości cechy od mediany (M); to mediana a nie dominanta jest przeciętną wartością cechy wśród miar pozycyjnych, tak jak śr. arytmetyczna wśród klasycznych. Q mierzy zróżnicowanie w tzw. zawężonym obszarze zmienności, czyli dla 50% jednostek, których wartości znajdują się pomiędzy wartością kwartyla pierwszego (Q1.4) i kwartyla trzeciego (Q3.4). Można tutaj zastosować pewną analogię: R=xmax - xmin (empiryczny obszar zmienności) i Q=Q3.4 - Q1.4 (zawężony obszar zmienności). Istnieją dwie ogólne sytuacje w których wykorzystujemy miary pozycyjne:

a) nie można policzyć miar klasycznych, więc musimy liczyć pozycyjne, b) można policzyć klasyczne i liczymy pozycyjne aby uzupełnić posiadane informacje.

W szczególności, w wypadku odchylenia ćwiartkowego:

a) gdy nie możemy policzyć śr. arytmetycznej, gdy np. rozkład badanej cechy jest skrajnie asymetryczny lub nie znamy wszystkich wartości badanej cechy, wtedy Q jest jedyną miarą z której możemy korzystać

b) gdy można policzyć śr. arytmetyczną, obliczamy Q jako dodatkową, uzupełniającą miarę, pod warunkiem że zbiorowość jest dostatecznie liczna aby wyznaczyć Q1.4 i Q3.4.

Znając M i Q można wyznaczyć pozycyjny typowy obszar zmienności (pxtyp). Obszar ten zawiera wartości jednostek z przedziału M-Q < x < M+Q. Przedział ten po odrzuceniu wartości skrajnych, charakteryzuje typowe wartości jednostek w zbiorowości statystycznej. Klasyczne absolutne Miary te są wypadkową różnic poszczególnych wartości cechy spotykanych u wszystkich jednostek zbiorowości. Różnice te wyznaczamy w stosunku do średniej arytmetycznej.

0)  

n

i i xx

1 )( 1) 

n

i i xx

1

2)( 2)  

n

i i xx

1

Jako że warunek 0. zgodnie z własnościami średniej arytmetycznej jest równy 0 i nie posiada więc żadnej wartości poznawczej, zaproponowano inne podejścia: 1. odchylenie standardowe S(x) 2. odchylenie przeciętne d(x) Warto podkreślić, że S(x) nie liczymy bezpośrednio. Najpierw liczymy wariancję S2(x) a odchylenie standardowe otrzymujemy przez jej spierwiastkowanie. Te dwie miary się wzajemnie wykluczają – liczymy tylko jedną z nich!

str. 7

Miary te mówią nam o ile średnio poszczególne wartości cechy odchylają się od średniej arytmetycznej. W praktyce zazwyczaj za podstawową klasyczną absolutną miarę zróżnicowania przyjmuje się S(x). W naukach ekonomicznych to właśnie odchylenie standardowe jest parametrem który decyduje o kształcie rozkładu normalnego. Natomiast w naukach ścisłych liczy się raczej d(x). Dlatego gdy wyraźnie nie będzie określone z jakiej miary klasycznej absolutnej mamy skorzystać to liczymy S(x).

Znając S(x) i x wyznaczamy klasyczny typowy obszar zmienności (kxtyp). Obszar ten zawiera wartości jednostek z przedziału x -S(x) < x < x +S(x). Tu już uwzględniony jest cały obszar zróżnicowania, a nie jak w Q tylko część. Jeżeli rozkład jest symetryczny to 68% (ok. 2/3) jednostek ma wartości z tego przedziału. Określa się też jeszcze inne obszary:

x -2S(x) < x < x +2S(x) – 95% jednostek dla rozkładu symetrycznego x -3S(x) < x < x +3S(x) – 99,7% jednostek, stąd możemy przyjąć, że R  6S(x) Pomiędzy odchyleniami zachodzi relacja: S(x) > d(x) > Q , a że głównie liczymy S(X) to: S(x) > Q Wariancja nie posiada interpretacji statystycznej, ale ma duże znaczenie teoretyczne, gdyż służy do wyznaczania S(x). I pamiętajmy jeszcze że S2(x) to jest zawsze liczna nieujemna! Stosunkowe klasyczne i absolutne Nazywamy je ogólnie współczynnikami zmienności (V). Są obliczane jako iloraz miary mierzącej składnik przypadkowy i miary mierzącej składnik systematyczny. Miary te są niemianowane i interpretowane w procentach. Informują jaki procent składnika systematycznego stanowi składnik przypadkowy. Zazwyczaj przyjmują wartości 0-1 lub 0%-100%. Zazwyczaj, bo może się zdarzyć że przy skrajnym zróżnicowaniu będzie więcej niż 100%, ale jeśli tak wyjdzie, to oznacza że w ogóle nie powinniśmy byli brać się za ich obliczanie. Jeżeli współczynnik zmienności jest mniejszy od 10% to wartości cechy wykazują nieistotne zróżnicowanie. Im wyższa wartość V tym zróżnicowanie jest większe. Gdy V>60% to można przyjąć, że badana zbiorowość jest niejednorodna z punktu widzenia badanej cechy. Gdy badamy rozkład jednej cechy, to ocena wielkości zróżnicowania jest subiektywna (np. czy 40% to dużo czy mało). Dlatego miary stosunkowe mają wielką wartość poznawczą zwłaszcza przy wszelkiego typu porównaniach.

%100)(  x xSVS %100

)( 

x xdVd %100 M

QVQ

IV. Miary asymetrii Miary te pozwalają zbadać czy wartości badanej cechy są rozłożone równomiernie w stosunku do średniej czy też mają tendencję do skupiania się przy dolnej bądź górnej granicy przedziału zmienności cechy. Pozwalają określić czy asymetria występuje, a jeżeli tak, to jaka jest jej siła i kierunek. Do oceny asymetrii wykorzystujemy trzy współczynniki asymetrii. klasyczny A1 – najczęściej przyjmuje wartości z przedziału (-2;2), pozycyjny A2 – ściśle określony <-1;1> klasyczno-pozycyjny A3 – najczęściej z przedziału (-1;1), Parametry A1 i A3 wykluczają się wzajemnie, gdyż mierzą asymetrię w całym obszarze zmienności. A2 mierzy asymetrię w zawężonym obszarze zmienności i uzupełnia miarę A1 lub A3. O sile asymetrii decyduje wartość bezwzględna współczynnika A (w szczególności A1, A2, A3). Jeśli A=0 to mamy do czynienia z rozkładem symetrycznym. Im |A| jest bliżej końców przedziałów, tym asymetria jest silniejsza. Z reguły przyjmuje się następującą klasyfikację określania asymetrii: A: 0 < słaba < 0,4 < umiarkowana < 0,7 < silna < 1

str. 8

O kierunku asymetrii decyduje znak współczynnika asymetrii:  jeśli A<0 to mamy asymetrię lewostronną, czyli wartości cechy mają tendencję do skupiania się przy

górnej granicy przedziałów obszaru zmienności;  jeśli A>0 to mamy asymetrię prawostronną, czyli wartości cechy mają tendencję do skupiania się przy

dolnej granicy przedziałów obszaru zmienności;  jeśli A=0 to mamy rozkład symetryczny.

Gdy mamy określić wyłącznie kierunek (a nie musimy wartości) to możemy skorzystać z wykresu lub z relacji pomiędzy średnią arytmetyczną, medianą i dominantą.

asymetria lewostronna A < 0 brak asymetrii A=0 asymetria prawostronna A < 0

x < M < D x = M = D x > M > D V. Miary spłaszczenia Należy je stosować dla rozkładów symetrycznych. Wyróżniamy klasyczną i pozycyjną miarę spłaszczenia.

klasyczna - )(4

4

xS

  pozycyjna - )(2 10.110.9

4.14.3

DD QQ

K p  

rozkład spłaszczony rozkład normalny rozkład wysmukły

 < 3  = 3  > 3

Kp > 0,263 Kp = 0,263 Kp < 0,263 Między spłaszczeniem a zróżnicowaniem istnieje silny związek polegający na tym, że im większe zróżnicowanie, tym rozkład jest bardziej spłaszczony a im mniejsze zróżnicowanie tym rozkład jest bardziej wysmukły. Jeśli jest małe zróżnicowanie (r. wysmukły) to wartości mają tendencję do skupiania się wokół wartości średniej arytmetycznej a dla rozkładów spłaszczonych, wartości są mniej skupione, więc zróżnicowanie jest większe. VI. Miary koncentracji Koncentracją nazywamy nierównomierny rozdział ogólnej sumy wartości cechy pomiędzy poszczególne jednostki zbiorowości; np. koncentracja wielkości produkcji oznacza, że niewielka liczba firm produkcyjnych daje znaczną część ogólnej wielkości produkcji, a udział pozostałych firm, chociaż liczebnie duży, daje znacznie mniejszą część ogólnej wielkości produkcji (np. 20% firm wytwarza 80% produktów), podobnie można mówić też o dochodach. Koncentrację wyznaczamy wówczas gdy rozkłady empiryczne charakteryzują się skrajną asymetrią i nie można w tym przypadku zastosować innych miar z analizy struktury. Koncentrację można analizować na trzy sposoby:

1) sposób tabelaryczny - wykorzystując odpowiednio zbudowaną tablicę, 2) sposób graficzny – wykorzystując wykres 3) sposób analityczny – wykorzystując (obliczając) parametr K

Do analizy koncentracji konieczne jest wyznaczenie odsetków podmiotów koncentracji (Yi) i odsetków przedmiotów koncentracji (Ui).

str. 9

%100 n n

Y ii %100 

ii

ii i nx

nx U

xini - to łączna wartość badanej cechy przypadająca na i-ty przedział tej cechy Po wyznaczeniu Yi i Ui musimy wyznaczyć Yski [%] i Uski [%] i to wszystko co jest potrzebne w tabeli:

xi ni xini Yi Ui Yski Uski

 100

 100

20 30 50 70 100

1 5 20 40 100

Jak widać w tabeli – 70% podmiotów daje 40% produkcji, więc 30% pozostałych daje aż 60% Jeżeli skumulowane odsetki z dwóch ostatnich kolumn są sobie równe, to mamy brak koncentracji, a jeśli są rozbieżności pomiędzy tymi wielkościami to na pewno będzie występować zjawisko koncentracji (i im większa różnica tym większa jest koncentracja). Mając już tabelę można narysować wykres – tzw. krzywej koncentracji lub krzywej Lorenza: Sprawdzamy jak daleko od linii równomiernego rozdziału (rozkładu) znajduje się krzywa koncentracji. Im jest dalej, tym koncentracja jest większa. Należy zaznaczyć, że i tabela i wykres mają charakter subiektywny (!). Znając wykres możemy pokusić się o analizę parametru K. Parametr ten jest to stosunek pola między krzywą Lorenza i linią równomiernego rozkładu (na rysunku – W) do pola pod linią równomiernego rozkładu (na rysunku jest to W+Z). Jako że pole to wynosi 5000 (jest to połowa kreskowanego kwadratu o bokach 100x100), pole W można zapisać jako 5000-Z. Robimy ten manewr gdyż nie znamy wzoru funkcyjnego krzywej Lorenza, a pole Z możemy obliczyć korzystając z tzw. metody trapezów (ale to na ćwiczonkach).

5000

5000 5000

ZW ZW

WK  

K przyjmuje wartości <0;1>, im bliżej 1, tym koncentracja jest silniejsza, a im bliżej 0 tym jest słabsza; gdy K wynosi 0 to mamy brak koncentracji, gdy 1 to mamy tzw. koncentrację całkowitą; jednak w praktyce parametr K nie przyjmuje raczej wartości 0 i 1. Generalnie, jeżeli będzie skrajna asymetria to koncentracja zawsze wystąpi. Statystyczne metody badania prawidłowości w zakresie dynamiki zjawisk masowych (7.XI) W skrócie będziemy mówić po prostu o analizie dynamiki. Podstawową formą prezentacji danych w analizie dynamiki jest szereg czasowy. Szereg czasowy to ciąg wartości badanego zjawiska obserwowanego w kolejnych jednostkach czasu. Zazwyczaj* szereg czasowy składa się z dwóch kolumn (wierszy), gdzie w 1. są jednostki czasu, a w 2. jest poziom badanego zjawiska w jednostce czasu t (yt). *A dlatego zazwyczaj, bo może być np.

100%

W Z

Yski

Uski

100%

linia równomiernego rozkładu

krzywa Lorenza

str. 10

tak sformułowane zadanie: w latach 1990-95 poziom badanego zjawiska kształtował się następująco y1,y2,y3... i tutaj nie mamy drugiego wiersza :) Szeregi czasowe dzielimy na:

1) szeregi momentów – informują o rozmiarach zjawiska w ściśle określonym momencie czasu – mają zawsze podane informacje typu „stan na” lub „stan w dniu”. Jeśli wielkości są niesumowalne to jest to szereg momentów (np. liczba ludności w Polsce: 1998 – 38,5 mln, 1999 – 38,6 mln i jak dodamy obie wartości, chcąc poznać liczbę ludności 1998-99 to nam wyjdzie pewna niejasność)

2) szeregi okresów – informują o rozmiarach zjawiska w określonych okresach czasu, np. „liczba nowo zarejestrowanych bezrobotnych w ciągu roku 1995”

Trudny przykład: „spożycie towaru w Polsce na 1 mieszkańca”; liczbę ludności z danego roku bierzemy jako stan ze środka roku (30.VI) a że badamy głównie spożycie (na jakiś okres) tak więc jest to szereg okresowy. Graficzną formą prezentacji szeregów czasowych są z reguły wykresy liniowe (tzw. wieloboki dynamiki):

wielobok momentów wielobok okresów (wartości na końcach okresów) (wartości na środkach okresów) Badanie dynamiki zjawisk obejmuje trzy zagadnienia: I) analizę tendencji centralnej, czyli wyznaczanie przeciętnego poziomu zjawiska w czasie, II) badanie zmian krótkookresowych, czyli określanie jakie zmiany zaszły w poziomie zjawiska w dwóch

okresach (momentach) czasu, III) badanie zmian długookresowych, czyli określanie jakie czynniki wpływają na zmienność zjawiska w czasie. I. Analiza tendencji centralnej. Przeciętny poziom zjawiska w czasie wyznaczamy:

1) dla szeregów okresów przy pomocy średniej arytmetycznej:

n

y y

n

t t

 1 , gdzie yt to poziom zjawiska w okresie t, n to liczba okresów

2) dla szeregów momentów przy pomocy średniej chronologicznej

1 2 1...

2 1

121

 

n

yyyy y

nn

CH , gdzie n to liczba momentów czasu

II. Badanie zmian krótkookresowych. Wśród metod badań zmian krótkoterminowych wyróżniamy przyrosty i indeksy. Przyrosty są to najprostsze metody badania dynamiki. Dzielimy je na:

1) absolutne – jest to różnica pomiędzy poziomem zjawiska w okresie (momencie) badanym a poziomem tego zjawiska w okresie (momencie) podstawowym; w zależności od tego czy podstawa porównań jest stała czy zmienna w czasie, przyrosty absolutne dzielimy na:

yt

t

yt

t

str. 11

a) jednopodstawowe b) łańcuchowe

przyrosty absolutne są to wielkości mianowane, czyli należy je interpretować w tej samej jednostce miary co badane zjawisko; informują nas o ile faktycznie zmienił się poziom badanego zjawiska w porównywanych okresach (momentach) czasu;

2) względne – to stosunek przyrostu absolutnego do poziomu zjawiska w okresie (momencie) podstawowym; i podobnie dzielimy je na

a) jednopodstawowe b) łańcuchowe (nazywane wskaźnikami tempa przyrostu)

przyrosty względne są to wielkości niemianowane i interpretowane w procentach (oczywiście możemy np. otrzymać 0,2 i wtedy zamieniamy to na 20%); informują nas o ile procent zmienił się poziom badanego zjawiska w porównywanych okresach (momentach) czasu; jeżeli jest dodatni to mówimy oczywiście o przyroście, jeśli ujemny to o spadku a jeśli równy 0 to mówimy o braku zmian.

przyrosty jednopodstawowe łańcuchowe

absolutne 00/ yyy tt  11/   tttt yyy

względne 0

0

0

0/

y yy

y y tt  

1

1

1

1/

  

t

tt

t

tt

y yy

y y

Indeksem (wskaźnikiem dynamiki) nazywamy stosunek poziomu zjawiska w okresie (momencie) badanym do poziomu zjawiska w okresie (momencie) bazowym. Indeksy w zależności od podstawy porównań dzielimy oczywiście jakżeby inaczej, na jednopodstawowe i łańcuchowe.

Tu mała dygresja – i to symbol oznaczenia indeksów indywidualnych a I – indeksów agregatowych (o których będzie później).

Indeksy to wielkości niemianowane, często wyrażane w procentach, informują o ile % zmienił się poziom badanego zjawiska w porównywanych okresach (momentach) czasu. Jak wytrawny czytelnik mógł zauważyć, indeksy i przyrosty względne informują nas o tym samym(!). Tak więc liczymy tylko jedno z nich (a w praktyce częściej jest to indeks).

jednopodstawowe łańcuchowe

0 0/ y

y i tt

1 1/

  

t

t tt y

y i

Aby zinterpretować indeksy musimy policzyć takie coś: (i-1)100%, gdy i jest wyrażone w postaci ułamka, lub i%-100% gdy i jest wyrażone w procentach. Tak więc gdy i=1 to brak zmian, i>1 to wzrost, i<1 to spadek (np. 1,2 to wzrost o 20% a 0,8 to spadek o 20%) Pomiędzy indeksami a przyrostami względnymi istnieje ścisły związek, który można zapisać następująco:

0

0/ 0/ 1 y

y i tt

  ,

1

1/ 1/ 1

 

 

t

tt tt y

y i

komentarze (0)
Brak komentarzy
Bądź autorem pierwszego komentarza!
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome