Logika formalna - Notatki - Logistyka, Notatki'z Logistyka. University of Lódz
stokrotka80
stokrotka8019 March 2013

Logika formalna - Notatki - Logistyka, Notatki'z Logistyka. University of Lódz

PDF (161.7 KB)
11 strona
467Liczba odwiedzin
Opis
Notatki przedstawiające zagadnienia z zakresu logistyki: logika formalna.
20punkty
Punkty pobierania niezbędne do pobrania
tego dokumentu
Pobierz dokument
Podgląd3 strony / 11
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.

Logika formalna- jest to przekazywanie informacji o rzeczywistości w logice wiąże się z

ujmowaniem wypowiedzi w języku ze względu naprawdę lub fałsz. Tzn. ze względu na

zgodność wypowiedzi z rzeczywistością.

Informacje przekazują zdania oznajmujące. Słowa lub frazy (ciągi słów) pełnia tę funkcje

(oznajmiania) o ile są skrótami zdań oznajmujących. Wypowiedzi wielozdaniowe przekazują

informacje o ile można je zredukować do zdań oznajmujących zawierających owe zdania w

porządku wyznaczonym przez odpowiednie spójniki wiążące te zdania takie jak: i, albo,

jeżeli, to.

1. Dzisiaj (…pada..)

2. dzisiaj pada. Jutro pójdę na grzyby. (od dwóch dni jest strasznie gorąco)

ISTNIEJE PODZIAŁ NA ZDANIA :

ZDANIA ANALITYCZNE- ich prawdziwość wynika ze znaczenia jakie posiadają w danym

języku.

ZDANIA SYNTETYCZNE- Ich znaczenie nie przesądza o wartości logicznej , tzn. ich

wartość logiczna (prawda, fałsz) zależy od faktów pozajęzykowych.

Kategoria SYNTATYCZNA DANEGO JĘZYKA- to każdy zbiór takich wyrażeń tego

języka, który można wzajemnie zastępować w dobrze zbudowanych zdaniach otrzymując w

wyniku również dobrze zbudowane zdanie.

ANALTYCZNE ZWIĄZKI ZDAŃ – są to związki wartości logiczne zdań, związki które

zachodzą wyłącznie na mocy znaczeń tych zdań. Np.; Każdy człowiek jest śmiertelny;

Sokrates jest człowiekiem. Sokrates jest śmiertelny.

LOGICZNA PRAWDZIWOŚĆ ZDANIA oraz związek logiczny jego z innymi zdaniami

wynikają ze struktury tego zdania oraz znaczenia występujących z nim stałych logicznych.

STAŁE LOGICZNE – są to uniwersalne wyrażenia, do których należą spójniki zdaniowe (i,

albo, lub, jeżeli, to) oraz słowa kwalifikujące ( każde niektóre, itd.).

FORMA LOGICZNA ZDANIA- jest to zbiór syntaktycznych cech danego zdania, który

stanowi o jego logicznej prawdziwości, bądź o związku wynikania logicznego z łączącymi je

innymi zdaniami.

POSTULATY ZNACZENIOWE – SA to zdania, których bezwzględna prawdziwość jest

określana przez reguły aksjomatyczne. Są to zdania których charakteryzują znaczenia

występujących ich wyrażeń.

ZWIĄZKI LOGICZNE ZDAŃ – teorię związków logicznych zdań można sprowadzić do

wynikania logicznego tym niemniej wyróżniamy następujące związki logiczne:

1)WYNIKANIE LOGCZNE – ma postać zdania, składa się z poprzednika okresu

warunkowego. Jest to zdanie występujące pomiędzy słowami „jeżeli”; i „to”, oraz ze zdania

nazywanego następnikiem określenia warunkowego i jest to zdanie następujące po spójniku

”to”.

Jeżeli Z2 wynika logicznie z Z1 zawsze i tylko wtedy gdy okres warunkowy, którego

poprzednikiem jest Z1 a następnikiem Z2 jest prawdą logiczna.

2) RÓWNOWAŻNOŚĆ LOGICZNA- Z1 jest logicznym równoważnikiem Z2 zawsze i

tylko wtedy gdy Z1 wynika logicznie z Z2, a Z2 wynika logicznie z Z1.

Z1Z2; Z1≡Z2

3) SPRZECZNOŚĆ LOGICZNA – Z1 jest logicznie sprzeczna z Z2 zawsze i tylko wtedy

gdy: 1) ~Z1->Z2; 2)~Z2->Z1; 3) Z1->~Z2; 4) Z2->~Z1 (Z1≠Z2; Z1 ≡Z2)

4) WYKLUCZANIE SIĘ LOGICZNE ZDAŃ – Z1 wyklucza się logicznie z Z2 zawsze i

tylko wtedy gdy negacja Z1 wynika logicznie z Z2 i wówczas negacja Z2 wynika logicznie z

Z1 jeżeli Z1 to nie Z2.

5) DOPELNIENIE SIĘ LOGICZNE ZDAN- Z1 dopełnia się logicznie z Z2 zawsze i tylko

wtedy gdy Z1 wynika logicznie z negacji Z2. Jeżeli nie Z2 to Z1 , oraz wówczas także gdy Z2

wynika logicznie z negacji Z1. Jeżeli nie Z1 to Z2.

SYMBIOTYKA – jest to ogólnie teoria znaku z szczególnym uwzględnieniem znaków

tworzących język. Jest to teoria wyrażeń.

Semiotyka dzieli się na trzy działy:

1) semantyka

2) pragmatyka

3) syntaktyka Ad.1)Semantyka - jest to dziedzina opisująca stosunki zachodzące między znakami a

rzeczywistością , do której znaki się odnoszą. Do takich stosunków zalicza się m.in.

oznaczenie

OZNACZENIE a) jest to stosunek nazwy do desygnacji;; b) jest to jakiekolwiek odnoszenie

się do rzeczywistości, której ten znak dotyczy.

Desygnat nazwy „N” języka „J” przy pewnym jej znaczeniu jest każdy przedmiot, o którym

można ja zgodnie z prawda orzec. Np. desygnatem nazwy „Koń” jest „Siwek”

Stosunek nazwy do jej desygnatu nazywa się oznaczeniem lub desygnowaniem.

Zbiór wszystkich desygnatów nazwy przy danym jej znaczeniu stanowi DENOTACJĘ,

czyli zakres tej nazwy. (gdy nazwa jest wieloznaczna ma więcej niż jeden zapis, np. drzewo-

lipa, kasztan, klon).

Przy szerokim zakresie desygnowanie przysługuje nie tylko nazwom, ale również

wyrażeniom z innych kategorii somatycznych.

Np. desygnatem wyrażenia „kocha” albo „rządzi” jest para przedmiotów X, Y o których

prawdą jest że „X” kocha „Y”, „X” rządzi „Y”

W węższym znaczeniu denotacja przysługuje tylko nazwom a w niektórych ujęciach

denotacja nie dotyczy nazw własnych.

Możemy również sprowadzić albo definiować jako określenie klasy wszystkich wyłącznie

aktualnie istniejących desygnatów nazwy. Taka denotacja odróżnia wiec klasę desygnatów

aktualnie istniejących od klasy desygnatów możliwych albo realizowanych ( możliwych do

realizacji) albo realizowanych.

NAZWY PUSTE lecz nie sprzeczne mają denotację zerową, np.: syn Kopernika- denotacja

pusta (zerowa).

ZNAK

 X jest znakiem dla członków grupy G gdy X jest przedmiotem postrzeganym

zmysłowo. Przy czym między członkiem grupy G istnieje umowa wyrażona lub domyślna

ustanawiająca między X i jakimś przedmiotem stosunek szeroko pojętego oznaczenia.

 Znakiem w ścisłym tego słowa znaczeniu nazywamy dostrzegalny układ rzeczy, czy

zjawisko spowodowane przez kogoś ze względu na to, iż jakieś wyrażenie ustanowiono lub

zwyczajowo ukształtowane reguły nakazują wiązać z tym układem rzeczy czy zjawiskiem

myśli określonego rodzaju.

SUBSTRAT MATERIALNY ZNAKU może być trwały , np.: znak drogowy, flaga,

lub nietrwały: mówione słowo, umowny gest.

ZNAKI SŁOWNE SĄ SKLADNIĄ JĘZYKA

JĘZYK- jest to system obejmujący wyznaczony przez pewne reguły zbiór znaków słownych,

takich znaków, z którymi odpowiednie reguły nakazują wiązać myśli określonego typu, a inne

reguły określają dopuszczalny sposób wiązania tych znaków w wyrażenia zlożone.

SYMBIOTYKA określa dla języka 3 zbiory reguł:

1) Reguły wyznaczające sposób słów danego języka;

2) Reguły znaczeniowe

3) Reguły składniowe (syntaktyczne)

NAZWOM przysługują obiekty, zdaniom – stany rzeczy, natomiast spójniki zdaniowe

określają relację między stanami rzeczy.

JĘZYK DZIELI się na:

A) JĘZYK NATURALNY - reguły są kształtowane zwyczajowo, jego używanie

dopuszcza różne sytuacyjne uwarunkowania wypowiedzi.

B) JĘZYK SZTUCZNY - konstruuje się nazwy i zdania ze względu na z gory

określony cel. Istnieje wiele języków sztucznych. Poszczególne dyscypliny naukowe

przekształcają język potoczny poprzez np.: uściślenie w sposób umowny znaczenia słów

wchodzących do słownika danej dyscypliny.

Semiotyka określa dany język ze względu na słownictwo i składnie właściwą dla tego języka.

SŁOWNICTWO – jest to zasób słów posiadających ustalone znaczenie w danym języku .

Zasób ten można dzielić ze względu na sposób zużycia:

1) SŁOWNIK CZYNNY- jest to zasób słów, którym dana osoba posługuje się

prawidłowo w danym języku.

2) SŁOWNIK BIERNY – zasób słów, którymi dana osoba prawidłowo rozumie w

danym języku, choć się nim nie posługuje czynnie.

Do słownictwa wchodzą również wyrażenia złożone zwane INDIOMAMI. Ich znaczenie jest

inne od znaczenia wyrazów, które wchodzą w ich skład , np.: czarna owca.

ZNACZENIE WE WSPÓŁCZESNYCH DOKTRYNACH JĘZYKOZNAWCZYCH

Współczesne doktryny językoznawcze w zasadzie odchodzą od utożsamienia znaczeń ze

zjawiskiem psychicznym albo z przedmiotem albo z pojęciem.

W zamian bierze się pod uwagę znaczenie jako relację wiążącą znak w danym zewnętrznym

układem odniesienia.

Ze względu na różne układy odniesienia aktywne w procesie komunikacji wyróżnia się

następujące typy znaczeń:

ZNACZENIE STRUKTURALNE – odpowiada ono relacji danego znaku do innych

znaków. Dany znak znaczy o tyle o ile pozostaje umiejscowiony w określony sposób wśród

innych znaków w dwojaki sposób: 1) w systemie językowym, np.: wyraz w systemie

leksykalnym danego języka; 2) w wypowiedzi umieszczony w jakimś kontekście

ZNACZENIE SYGNIFIKATYWNE – odpowiednie relacje znaków do określonej treści

pojęciowej

ZNACZENIE DENOTATYWNE- odpowiada relacji danego znaku do odpowiedniej klasy

oznaczonych przedmiotów.

ZNACZENIE PRAGMATYCZNE- odpowiada relacji znaków do zamiaru

komunikacyjnego nadawcy wypowiedzi oraz do reakcji na nią odbiorcy.

Do SEMIOTYKI należą również:

PRAGMATYKA – jest to 2 dział semiologii. Zajmuje się stosunkami zachodzącymi miedzy

znakami, a tymi które te znaki nadają lub odbierają. Są to stosunki stwierdzenia i rozumienia,

komunikowania.

SYNTAKTYKA – jest to 3 dział. Zajmuje się analiza stosunków zachodzących pomiędzy

znakami ( takich jak: wynikanie, sprzeczność, komunikacja) oraz stosunków zachodzących

pomiędzy składnikami wyrażeń złożonych.

SYNATKTYKA FORMUJE 2 RODZAJE REGUŁ:

1) reguły określające SPOSÓB ŁĄCZENIA WYRAŻEŃ w wyrażenia złożone

2) reguły określające SPOSÓB OTRZYMYWANIA JEDNYCH wyrażeń z innymi

wyrażeniami, tak by zachodziło dziedziczenie danej własności wyrażeń. Do nich

należą reguły DEDUKCYJNE rachunku zdań ( reguła oderwania, reguła

podstawiania)

LOGIKA wprowadza podział wyrażeń na rodzaje, które nazywają się kategoriami

składniowymi. Podział ten występuje w odniesieniu do wyrażeń języków naturalnych

wyrażeń języków symbolicznych.

Podział ten nie pokrywa się z podziałem na części zdania i gramatycznym podziałem na

części mowy. Wyróżnia zbudowane zgodnie z wymogami składni w logice są traktowane

jako wyrażenia sensowne danego języka, zaś wszystkie inne wyrażenia są traktowane jako

wyrażenia bezsensowne.

Wyrażenia danego języka dzielą się na klasy wyrażeń zwane KATEGORIAMI

SYNTAKTYCZNYMI lub składniowymi.

1)DWA wyrażenia należą do tej samej klasy wtedy i tylko wtedy gdy po zastąpieniu jednego

wyrażenia przez drugie otrzymujemy z każdego wyrażenia sensownego wyrażenie sensowne.

2) Dwa wyrażenia należą do różnych klas wtedy i tylko wtedy gdy, po zastąpieniu jednego

wyrażenia przez drugie otrzymujemy z wyrażenia sensownego wyrażenie bezsensowne.

Z zachowaniem sensowności nie musi się łączyć zachowanie prawdziwości.

PODZIAŁ KATEGORII SKŁADNIOWYCH wyróżnia zasadniczo 4 kategorie:

1) ZDANIA; 2) NAZWY; 3) FUNKTORY; 4) OPERATORY.

1) ZDANIA – przez termin zdanie rozumie się w logice ( klasycznej) wyłącznie zdanie

oznajmujące czyli tzw. Zdanie w sensie logicznym. Zdanie takie można ujmować na 3

płaszczyznach:

a) na płaszczyźnie syntaktycznej ( ujęcie strukturalne) – „Z” jest zdaniem języka „J” 

gdy, Z jest wyrażeniem o określonej strukturze przypisanej przez reguły składni języka „J”

b) na płaszczyźnie semantycznej – „Z” jest zdaniem języka „J”  gdy „Z” jest „J”

prawdziwe lub fałszywe tzn. Posiada wartość logiczną.

c) na płaszczyźnie pragmatycznej – „Z” jest zdaniem języka „J”  gdy, „Z” wyraża w „J”

jakąś myśl czyli sąd w sensie logicznym.

2) NAZWA - określa się wszystkie wyrazy i wyrażenia, które mogą być podmiotem lub

orzecznikiem wyrażenia sensownego w postaci M jest N np.: „Sieradz leży pomiędzy Łodzią

a Wrocławiem”; „Sieradz jest miastem leżącym pomiędzy Łodzią a Wrocławiem”; „Tablica

jest zielona”

Znaczenie językowe nazwy nazywanym pojęciem nominalnym w sensie logicznym.

W logice odróżnia się pojęcia w sensie logicznym od pojęć w sensie

psychologicznym, które są pewnymi zjawiskami psychicznymi.

Pojęcia w sensie psychologicznym mają charakter przedstawień nienaocznych czyli nie są

reprezentowane przez obrazowe przez obrazowe uobecnienia wyglądów przedmiotów.

Nazwa N oznacza przedmiot P  gdy prawdziwe jest zdanie „P jest N” np.: Giewont jest

górą.

Przedmiot oznaczony przez daną nazwą nazywa się jej DESYGNATEM.

Ze względu na ilość desygnatów wyróżnia się nazwy:

a) NAZWY OGÓLNE – maja one więcej niż 1 desygnat

b) NAZWY JEDNOSTKOWE - maja one dokładnie 1 desygnat

c) NAZWY PUSTE- nie mają żadnego desygnatu.

ZAKRES nazwy jest zarazem zakresem pojęcia będącego znaczeniem tej nazwy. O

przedmiotach należących do zakresu danego pojęcia mówi się, że podpadają pod to pojęcie.

Np.; Białość śniegu jest cechą. Śniegu.

3) FUNKTORY

 FUNKTORY - są to takie relacje i wyrażenia które używa się wyłącznie z innymi

wyrażeniami będącymi składnikami wyrażeń złożonych. Tymi składnikami sa najczęściej

zdania i nazwy.

 Funktory są to wyrażenia, które wraz z wyrażeniami składowymi zwanymi ich

argumentami tworzą złożone wyrażenia sensowne.

 Funktory to każde wyrażenia nie będące zdaniem ani nazwą, służące do

konstruowania zdań lub nazw lub innych (bardziej złożonych)funktorów.

FUNKTOR EKSTENSJONALNY – jest to funktor, który tworzy wraz ze swymi

argumentami wyrażenie ekstensjonalne tj. takie, że denotacja całego wyrażenia zależy

wyłącznie od denotacji wyrażeń składowych.

Jeśli wyrażeniem utworzonym przez funktor jest zdanie złożone, a denotacją zdania jest

wartość logiczna (prawdziwość lub fałszywość), to funktor jest wówczas ekstensjonalny, gdy

wartość logiczna zdania zależy wyłącznie od wartości logicznej zdań składowych, a nie

należy np.: od ich treści taki funktor ekstensjonalny nazywa się również funktorem

prawdziwościowym, ponieważ istnieje zależność pomiędzy prawdziwością argumentów, a

prawdziwością całego zdania złożonego.

Funktatorami prawdziwościowymi są wszelkie spójniki klasycznego rachunku zdań (np.:

symbol negacji, alternatywy itp.)

FUNKTORY dzielimy na kategorie składniowe ze względu na:

1) Kategorię składniową wyrażenia złożonego, które dany funktor tworzy ze swoimi

argumentami;

2) Ilość argumentów;

3) Kategorie składniowe kolejnych argumentów

FUNKTOR zdaniotwórczy O 1 ARGUMENCIE zdaniowym- jest to wyrażenie, które wraz

z jednym zdaniem tworzy wyrażenie złożone np.: funktor „nie” (~)~P

FUNKTOR zdaniotwórczy O DWÓCH ARGUMENTACH zdaniowych- jest to

wyrażenie, które wraz z dwoma zdaniami składowymi tworzy zdania złożone np.: „Dzisiaj

pada deszcz i jest mokro”; „Jeżeli będę miał pieniądze pojadę do Grecji”.

FUNKTOR zdaniotwórczy o JEDNYM ARGUMENCIE NAZWOWYM- jest to

wyrażenie, które wraz z jedną nazwą tworzy zdanie np.: „pada”; „Pada deszcz”, „Pada śnieg”.

FUNKTOR zdaniotwórczy o DWÓCH ARGUMENTACH NAZWOWYCH- np.:

„kocha”, „Jan kocha Julię”. (funktor mniejszości)

FUNKTOR zdaniotwórczy o TRZECH ARGUMENTACH NAZWOWYCH- jest to

wyrażenie tworzące zdanie wraz trzema nazwami, np.: „Pacjent wręcza lekarzowi kwiaty”

FUNKTOR nazwotwórczy o JEDNYM ARGUMENCIE NAZWOWYM – jest to

wyrażenie tworzące nazwę wraz z jedną nazwą.

FUNKTOR nazwotwórczy o DWÓCH ARGUMENTACH NAZWOWYCH- np..: spójnik

”i”: „goło i wesoło”; „Tadeusz i Zofia”; „Noce i dnie”.

Do kategorii syntaktycznych zaliczamy również stałe i zmienne oraz funkcje zdaniowe i

funkcje nazwowe . Mają one zastosowanie w językach sformalizowanych.

STAŁE – są to uniwersalne wyrażenia, do których należą spójniki zdaniowe np.: „i”,

„albo”; ”lub” oraz słowa kwantyfikujące np.: każdy, niektóre; z matematycznych znak „+”,

„-„.

ZMIENNE- (np.:a,b) stosowane w językach sformalizowanych w języku naturalnym

zastępują zaimki nieokreślone np.: ”ktoś”, „coś”.

W nauce stosuje się zmienne do sformułowania ogólnych nazw, prawidłowości. Stosując

zmienne należy jednocześnie zastrzec jakiego rodzaju stałe można podstawić za zmienne

stałe, które można podstawić za daną zmienną nazywają się WARTOŚCIAMI tej zmiennej.

ZMIENNE reprezentują stałe będące ich wartościami, zbiór stałych nazywa się

ZAKRESEM ZMIENNOŚCI danej zmiennej, która reprezentuje ów zbiór zmiennych

zaliczmy do tej samej kategorii składniowej, do której należą stałe będące ich wartościami

np.: zmienne nazwowe, za które można podstawić nazwy zaliczają się do kategorii. Zmienne

zdaniowe, za które można podstawić zdania zaliczają się do kategorii zdań.

DO OPERATORÓW ZALICZAMY:

- Kwantyfikatory; - Operator deskrypcji; - Operator abstrakcji; - Matematyczny znak

iloczynu, sumy, całki.

Dany operator zakłada wcześniej zdefiniowane pojęcie wiązania zmiennych.

Wyrażenie zawierające KWANTYFIKATOR składa się z 3 kolejno po sobie

występujących elementów: -kwantyfikator ogólny lub szczegółowy; -zmienne; -funkcje

zdaniowe, które nazywa się zasięgiem kwantyfikatora lub funkcją objętą kwantyfikatorem.

ZMIENNA przy KWANTYFIKATORZE do której się on odnosi tzn. występująca w

zasięgu kwantyfikatora jest związana przez kwantyfikator.

ZMIENNA WOLNA w danym wyrażeniu to zmienna nie związana w tym wyrażeniu przez

żaden kwantyfikator.Za zmienną wolną podstawia się stałe; ze zmienną związaną nie

podstawia się stałych.

Ta sama zmienna może być w wyrażeniu złożonym w jednej części związana, natomiast w

innej części wyrażenie może być wolne.

Wyrażenia mogą być EKSTENSJONALNE lub INTENSJONALNE.

1. EKSTENSJONALNE – wyrażenie W jest ekstensjonalnym – zdaniem ekstensjonalnym –

gdy jego wartość logiczna jest taka sama jak wartość logiczna jego części składowych.

J jest językiem ekstensjonalnym  gdy wszystkie wyrażenia J są ekstensjonalne.

EKSTENSJĄ lub DENOTACJĄ wyrażenia W nazywamy:

- wartość logiczną W, gdy W jest zdaniem;

-przedmiot, gdy W jest nazwą indywidualna (jednostkową)

-własność lub relację wyrażoną przez W, gdy W jest PREDYKATEM.

Do wyrażeń ekstensjonalnych odnoszą się reguły zastępowane pozwalające na zastępowania

dowolnych wyrażeń o tej samej denotacji. Stosowanie takich reguł nie zmienia denotacji

wyrażenia w którym dokonane zostało zastępowanie, m.in. nie zmienia wartości logicznej

zdania( zastępowalność zachowaniem prawdziwości)

Jeżeli dwa zbiory mają dokładnie te same elementy, to te zbiory są identyczne.

^x(x €Xx Y) -> (X=Y)

Dla każdego x, jeżeli x należy do X  gdy x należy do Y do X równa się Y.

2. INTENSJONALNE – wyrażenie złożone W jest intensjonalne  nie jest wyrażeniem

ekstensjonalnym tzn. że denotacja W zależy wyłącznie od denotacji wyrażeń składowych.

Do wyrażeń intensjonalnych zaliczamy zdania, język, punktory, nazwy. Np.: „ Jan Śniadecki

wiedział, że Mickiewicz jest autorem „Ballad i Romansów”. (jest autorem „Ballad i

romansów”- denotacja; Mickiewicz jest autorem „Ballad i romansów”- prawda; Śniadecki

zmarł w 1830 roku, wiec wiedział, że Mickiewicz jest autorem „Ballad i Romansów”.

DEF. KLASYCZNA ( normalna) – mają one formę równoważności lub równości. Po lewej

stronie formułowanej definicji występuje wyrażenie definiowane czyli definiendum.

Po prawej stronie wyrażenie definiujące – definiens, które składa się z terminów

określających wyrażenie definiowane (definiendum). Przekładalność definicji normalnej

wymaga warunków:

1. Definicja wolna jest od błędnego koła:

*błędne koło bezpośrednie gdy użyje się wyrażenia definiowanego w członie definiującym

*błędne koło pośrednie – wtedy gdy termin A definiuje się przez zespół terminów

zawierających B, a wśród tych terminów występuje termin A.

2. W definiendum każda zmienna występuje tylko raz, jest to warunek najogólniejszego

kontekstu dla definiendum.

3. Każda zmienna wolna występująca po jednej stronie definicji występuje jako wolna po

drugiej jej stronie, jest to warunek jednorodności. Nie spełnienie tego warunku może

prowadzić do sprzeczności.

Definicje normalne dzielą się ze względu na budowę na:

1. Wyraźne- po stronie definiendum znajduje się sam wyraz definiowany.

2. Kontekstowe – po stronie definiendum znajduje się wyraz definiowany wraz z

typowym dla siebie kontekstem. Def. Kontekstowa pełni rolę charakterystyki znaczeniowej

wyrażeń niesamodzielnych (niezupełnych), tzn. wyrażeń uzyskujących sens nie na drodze

przyporządkowania pewnym przedmiotom, lecz przez określenie roli jaką pełnia one w

kontekście.

Def. AKSJOMETRYCZNA – czyli def. Przez postulaty- def. Aksjometryczna terminów

t1…tn jest zbiór zdań Z1…Zn tak dobranych, że kolejno ograniczają zakres możliwych

interpretacji terminów t1…tn; możliwymi interpretacjami terminów t1…tn są takie

interpretacje, przy których zdania Z1…Zn są prawdziwe. X=y=z

1) ^x(xFx)

2) ^x^y(x Fy->yFx

3) ^x^y^z(xFy^yFz->xFz)

Def. ANLITYCZNA- D jest def. Analityczną wyrażenia W w języku Jgdy D jest definicją

normalną odpowiadającą na pytanie:

1) jakie jest znaczenie wyrażenia W w zastanym języku J w sposobie mówienia;

2) jaki jest zakres W w zastanym języku J w sposobie mówienia.

PRAGMATYCZNA odmiana definicji analitycznych,

D jest def. Analityczną wyrażenia W w języku J ze względu na osobę Pgdy P zalicza D

poprawnych definicji analitycznych wyrażenia W w J.

NOMINALNA wersja def. Analitycznej – D jest możliwą definicją nominalną wyrażenia W

dla języka J na gruncie języka

J”  gdy: *W € do języka J; *W € do bogatszego języka J” € J jako swa część właściwą;

*definiens jest przekładem wyrażenia W na odpowiednie wyrażenie z języka J

Def. CZĄSTKOWA- wyrażenie lub para wyrażeń w języku przedmiotowym o budowie

okresu warunkowego, które wprowadzają do danego języka nowy predykat, jako okres

warunkowy lecz nierównoważność; wyrażenie takie podaje tylko niektóre kryteria

stosowalności dla wprowadzenia terminu, takie kryteria to sam warunek konieczny lub sam

warunek wystarczający bądź niektóre tylko warunki konieczne lub występujące

Warunek konieczny formułuje się zwykle tak, że podaje się warunek wystarczający dla

negacji danego terminu. Termin definiowany cząstkowo jest zawsze nieostry.

Schematycznie def. Cząstkowa: przybiera postać pary zdań:

^x(P(x)Q(x) ^x(R(x)Q(x)); np.: jeżeli x ma 20 lat, to jest dorosły i jeżeli x ma 16 lat

to nie jest dorosły.

komentarze (0)
Brak komentarzy
Bądź autorem pierwszego komentarza!
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome