Tarcie - Notatki - Mechanika, Notatki'z Mechanika. Warsaw University of Technology
dlugie_nogi
dlugie_nogi15 March 2013

Tarcie - Notatki - Mechanika, Notatki'z Mechanika. Warsaw University of Technology

PDF (337.9 KB)
6 strona
573Liczba odwiedzin
Opis
Notatki dotyczące tematów z mechaniki: opór toczenia, tarcie poślizgowe
20punkty
Punkty pobierania niezbędne do pobrania
tego dokumentu
Pobierz dokument
Podgląd3 strony / 6
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.

3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała A na ciało B (rys. 3.4) rozłożyliśmy na składową normalną N i składową styczną T, którą nazwaliśmy siłą tarcia. Następnie powiedzieliśmy, że jeżeli stykające się powierzchnie są idealnie gładkie, siła tarcia jest równa zeru. Obecnie założymy, że stykające się powierzchnie ciał są chropowate i zajmiemy się omówieniem reakcji stycznej, czyli siły tarcia poślizgowego. W tym celu rozpatrzymy ciało A spoczywające na poziomej płaszczyźnie B, jak na rys. 3.10a. Siły czynne działające na ciało A zastąpimy siłą Q działającą w kierunku normalnej i siłą P działającą w płaszczyźnie stycznej. Reakcję R płaszczyzny B na ciało A również rozłożymy na składową normalną N i składową styczną T, czyli siłę tarcia poślizgowego. Jeżeli ciało A znajduje się w spoczynku (w równowadze), siły Q i N oraz P i T muszą się równoważyć:

T P N Q= =i . (a) Gdy siłę P będziemy zwiększać, to siła T będzie się zwiększać do pewnej maksymalnej wartości. Po przekroczeniu przez siłę P tej granicznej wartości siły tarcia ciało A zacznie się ślizgać po płaszczyźnie B i równowaga nie będzie już możliwa. Maksymalną wartość siły tarcia, przy której równowaga jest jeszcze możliwa, nazywamy graniczną siłą tarciaTg lub rozwiniętą siłą tarcia.

ρρ

A T

RN

PA

B

Q

R N

B

a) b)

Rys. 3.10. Reakcje z uwzględnieniem tarcia (a) oraz ilustracja stożka tarcia (b)

Graniczna wartość siły tarcia zależy od wielu czynników, nie wszystkie z nich są rozpoznane w zadowalającym stopniu. Do celów praktycznych wykorzystujemy, sformułowane przez Coulomba na podstawie doświadczeń, prawa tarcia.

docsity.com

Są one następujące: 1. Siła tarcia jest niezależna od wielkości stykających się ze sobą powierzchni i zależy od ich rodzaju. 2. Wartość siły tarcia ciała znajdującego się w spoczynku może się zmieniać od zera do wartości granicznej, wprost proporcjonalnej do nacisku normalnego. 3. Gdy ciało ślizga się po pewnej powierzchni, siła tarcia jest skierowana przeciwnie do kierunku ruchu i jest mniejsza od wartości granicznej.

Z drugiego prawa wynika, że siła tarcia ciała pozostającego w spoczynku, w zależności od układu sił działających na ciało, może przyjmować dowolną wartość w zakresie między zerem a wartością graniczną. Zatem siła tarcia spełnia nierówność:

,0 gTT ≤≤ (b)

gdzie Tg jest graniczną siłą tarcia, taką że

.NTg µ= (3.5) Występujący w tym wzorze współczynnik proporcjonalności jest współczynnikiem tarcia statycznego.

µ

Siła tarcia ciała poruszającego się po chropowatej powierzchni jest skierowana przeciwnie do kierunku ruchu, a jej wartość określa wzór:

,NT µ′= (3.6)

gdzie jest współczynnikiem tarcia kinetycznego. ′µ Z rysunku 3.10a wynika, że całkowita reakcja R tworzy z kierunkiem normalnej do powierzchni styku pewien kąt. Kąt ten wraz ze wzrostem siły tarcia będzie się zwiększał i osiągnie maksymalną wartość przy granicznej wartości siły tarcia Tg określonej wzorem (3.5). Ten maksymalny kąt, o jaki może się odchylić reakcja całkowita R od normalnej N, nazywamy kątem tarcia.ρ Z rysunku wynika, że

.NTg ρ= tg (3.7)

Jeżeli przedstawiona na rys. 3.10a siła styczna P będzie przyjmować wszystkie możliwe kierunki, to reakcja R zakreśli stożek, którego osią jest prosta pokrywająca się z reakcją normalną N.

Stożek ten nazywamy stożkiem tarcia (rys. 3.10b). Dla ciał, dla których współczynnik tarcia ma jednakową wartość we wszystkich kierunkach (ciała izotropowe), stożek tarcia będzie stożkiem kołowym.

docsity.com

Aby ciało znajdowało się w spoczynku, reakcja całkowita R musi leżeć wewnątrz stożka tarcia, a w przypadku tarcia całkowicie rozwiniętego na powierzchni tego stożka.

docsity.com

3.3.2. Opór toczenia Z doświadczenia wiemy, że podczas przetaczania ciężkiego walca po poziomej płaszczyźnie występuje opór, który nazywamy oporem toczenia lub przez analogię do tarcia poślizgowego tarciem tocznym. Niżej zajmiemy się wyjaśnieniem przyczyny powstawania oporu toczenia jednego ciała po drugim.

T N

P

A

a) b)

O

G

N O

G

A

T

h h

f

Rys. 3.11. Ilustracja tarcia toczenia Załóżmy, że sztywny walec o ciężarze G spoczywa na sztywnej poziomej płaszczyźnie. Do walca przyłożymy poziomą siłę P odległą od płaszczyzny o h (rys. 3.11a). Przy założeniu sztywności walca i płaszczyzny będzie się on stykał wzdłuż tworzącej przechodzącej przez punkt A. W tym punkcie wystąpi reakcja podłoża, którą rozłożono na normalną N i styczną T, czyli siłę tarcia. Jeżeli walec znajduje się w spoczynku, to siły działające na niego, zgodnie z warunkiem (3.4), muszą być w równowadze, tzn. ich suma geometryczna musi być równa zeru. Prowadzi to do równości skalarnych:

T P i G N= = . (a)

Założymy ponadto, że siła P jest mniejsza od granicznej wartości siły tarcia (3.5):

.NP µ≤ (b) Oznacza to, że walec nie może się ślizgać po płaszczyźnie. Jednak z analizy układu sił przedstawionych na tym rysunku wynika, że nie może on być w równowadze.

docsity.com

Łatwo zauważyć, że dla każdej wartości siły P i h≠ ≠0 0 siła ta, zgodnie ze wzorem (2.36), daje moment względem punktu A, którego wartość jest różna od zera:

( ) .0hPMA ≠=P (c) W tej sytuacji najmniejsza siła P spowodowałaby obrót walca (toczenie), co jest sprzeczne z zachowaniem się ciał rzeczywistych w podobnej sytuacji. Z przedstawionych rozważań wynika, że oporu toczenia nie można wyjaśnić na gruncie wyidealizowanego modelu ciała doskonale sztywnego. W rzeczywistości jeżeli walec i podłoże są wykonane z rzeczywistych materiałów, to przy małej wartości siły P toczenie walca nie wystąpi. Zacznie się on toczyć dopiero po przekroczeniu przez moment siły P względem punktu A pewnej wartości charakterystycznej dla materiałów walca i podłoża. Graniczną wartość momentu Ph, przy której walec jest jeszcze w równowadze, nazywamy momentem oporu toczenia. Jest on miarą tarcia tocznego. Zjawisko oporu toczenia jest spowodowane odkształcaniem się zarówno walca, jak i płaszczyzny, na której on spoczywa. Wtedy styk walca i płaszczyzny nie odbywa się wzdłuż tworzącej przechodzącej przez punkt A, lecz na ograniczonej powierzchni wynikającej ze wzajemnych odkształceń w miejscu styku walca i powierzchni. Reakcja normalna N jest wtedy wypadkową nacisków normalnych występujących na płaszczyźnie styku i działających na walec i jest przesunięta o pewną odległość w stosunku do punktu A w kierunku możliwego toczenia się (rys. 3.11b). Aby równowaga walca była zachowana, moment siły P względem punktu A musi być zrównoważony momentem reakcji N względem tego punktu:

( ).MhP A N= (d)

Moment ( )M A N nie może wzrastać nieograniczenie, lecz tylko do pewnej maksymalnej wartości. W przypadku granicznym jest on proporcjonalny do reakcji normalnej:

( ) .NfMM maxAA ==N (3.8) Występujący w tym wzorze współczynnik proporcjonalności f nazywamy współczynnikiem tarcia tocznego albo ramieniem tarcia tocznego. Współczynnik ten ma wymiar długości i jest podawany w centymetrach.

docsity.com

Aby walec nie zaczął się toczyć, musi być spełniony warunek:

.N h fPlubNfMhP maxA ≤=≤ (3.9)

Walec będzie w spoczynku, gdy wartość poziomej siły P nie przekroczy najmniejszej z wartości określonej warunkami (b) i (3.9). Gdy f/h < , walec zacznie się toczyć, zanim nastąpi poślizg. Zwykle f/h jest znacznie mniejsze od współczynnika tarcia µ .

µ

docsity.com

komentarze (0)
Brak komentarzy
Bądź autorem pierwszego komentarza!
To jest jedynie podgląd.
Zobacz i pobierz cały dokument.
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome