Efeito Fotoelétrico - Apostilas - Fisica, Notas de estudo de Física. Universidade do Estado do Amazonas (UEA)
Brigadeiro
Brigadeiro6 de Março de 2013

Efeito Fotoelétrico - Apostilas - Fisica, Notas de estudo de Física. Universidade do Estado do Amazonas (UEA)

PDF (319.5 KB)
11 páginas
2Números de download
1000+Número de visitas
Descrição
Apostilas de Física sobre o estudo do efeito fotoelétrico, quantum, dualidade onda-particula, a teoria do efeito fotoelétrico aplicações do efeito fotoelétrico.
20pontos
Pontos de download necessários para baixar
este documento
baixar o documento
Pré-visualização3 páginas / 11
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo

Instituto de Ciências exatas e Naturais

Faculdade de Física

Metodologia especifica para o ensino de física

O EFEITO FOTOELÉTRICO

E

SUAS APLICAÇÕES

Belém 2010

Instituto de Ciências Exatas e Naturais

Faculdade de Física

Belém

Sumário

INTRODUÇÃO........................................................................................................ 4

FUNDAMENTAÇÃO TEÓRICA.............................................................................. 5

O efeito fotoelétrico................................................................................................ 6

O Quantum.................................................................................................... 7

Dualidade Onda-Particula............................................................................ 7

A teoria do efeito fotoelétrico..................................................................... 8

Aplicações do Efeito fotoelétrico.......................................................................... 12

METODOLOGIA...................................................................................................... 14

docsity.com

CRONOGRAMA...................................................................................................... 15

CONSIDERAÇÕES FINAIS ................................................................................... 16

REFERENCIAS....................................................................................................... 17

INTRODUÇÃO

Este trabalho teve o intuito de evidenciar a importância dos fenômenos físicos no cotidiano, muitos dos fenômenos que ocorrem em nosso dia-a-dia, sem que saibamos qual a teoria por trás de tal fenômeno. E elaborar um projeto de ensino para que os educandos do ensino médio analisem os fenômenos existentes no seu cotidiano e percebam a relação da ciência com a tecnologia e sua importância na sociedade.

O Efeito Fotoelétrico está presente em nosso cotidiano, nas ruas, no shopping e em eletrônicos, muitas das vezes, nos perguntamos por que tal fenômeno acontece, este projeto visa informar como a ciência aplicada na tecnologia pode beneficiar a sociedade, através das aplicações de seus estudos.

Os educandos ao fim das aulas deverão conhecer e saber identificar o fenômeno do efeito fotoelétrico, tais como também pode aprimorar sua analise crítica, analítica e argumentativa relacionando a temática do efeito fotoelétrico.

FUNDAMENTAÇÃO TEÓRICA

Um importante passo no desenvolvimento das concepções sobre a natureza da luz foi dado no estudo de um fenômeno muito interessante, descoberto por H. Hertz. Este fenômeno recebeu o nome de efeito fotoelétrico.

O efeito fotoelétrico consiste na emissão de elétrons pela matéria sob a ação da luz.

Para se observar o efeito fotoelétrico, é conveniente utilizar um eletroscópio de folhas (ver figura abaixo). No eletroscópio monta-se uma lâmina de zinco. Se a lâmina estiver carregada positivamente, a sua iluminação, por exemplo com a ajuda de um arco voltaico, não influi na velocidade de descarga do eletroscópio. No entanto, se a lâmina estiver carregada negativamente, o feixe de luz do arco descarrega o eletroscópio com grande rapidez.

Este fato só pode ser explicado de uma maneira. A luz provoca a emissão de elétrons pela superfície da lâmina. Quando a lâmina está carregada negativamente, repele os elétrons e o

docsity.com

eletroscópio descarrega-se. Quanto está carregada positivamente, os elétrons emitidos sob a ação da luz são atraídos e voltam ao eletroscópio. É por esta razão que a carga do eletroscópio não varia.

No entanto, quando o feixe de luz é interceptado por um vidro normal, a lâmina carregada deixa de perder elétrons, independentemente da intensidade do feixe de luz. Como é conhecido que o vidro absorve os raios ultravioletas, pode concluir-se que é precisamente a parte ultravioleta do espectro que provoca o efeito fotoelétrico. Este fato, apesar de simples, não pode ser explicado com base na teoria ondulatória da luz. Não se compreende porque é que as ondas de luz de pequena freqüência não provocam a emissão de elétrons mesmo nos casos em que a amplitude da onda, e, portanto, a força com que ela atua nos elétrons, é grande.

O Efeito Fotoelétrico

Em 1886 e 1887 Hertz realizou experimentos que demonstraram a existência de ondas eletromagnéticas. Ele notou que descargas elétricas entre dois eletrodos ocorriam mais facilmente quando luz ultravioleta incidia sobre os eletrodos.

Alguns anos depois Lenard, seguindo idéias experimentais de hallwach, mostrou que a luz ultravioleta facilitava as descargas, pois fazia com que os elétrons fossem emitidos pela superfície do catodo.

A partir de então denominou-se efeito fotoelétrico a emissão de elétrons por uma superfície em decorrência da incidência de luz nesta mesma superfície.

O grande Problema é que nesta época a teoria clássica não explicava três características do fenômeno:

Aumentar a intensidade da luz incidente, a energia com que os elétrons eram arrancados não aumentava.

Pela teoria clássica o fenômeno deveria ocorrer para qualquer freqüência, na verdade o que se observou é que só ocorre para uma dada freqüência.

Pela teoria clássica deveria haver um retardamento entre o instante que o elétron começou a ganhar energia pela incidência da luz e o instante que foi emitido, o elétron guardaria energia durante este intervalo até que adquirisse o necessário para se ejetar.

Em todos os experimentos jamais se observou qualquer retardamento.

Todas as objeções procedentes foram resolvidas quando Einstein propôs um modelo corpuscular de energia, ou seja, a luz não era mais uma onda e sim uma infinidade de pacotes de energia, ou fótons.

docsity.com

As objeções foram resolvidas da seguinte forma:

Quando aumentava-se a intensidade da luz aplicada, eram emitidos mais fótons, mas a energia de cada um era a mesma, isso explica o fato dos elétrons arrancados não terem mais energia. Portanto o que ocorre quando aumenta-se a intensidade da luz é um maior numero de elétrons arrancados, todos com a mesma energia.

O experimento só ocorre acima de um dado valor de freqüência, pois o elétron preso ao metal necessita de uma energia para escapar do material, portanto a energia da luz deve ser suficiente para vencer esta interação do elétron com sua vizinhança.

O retardamento não ocorre pois a energia está toda no pacote, ao absorver o pacote o elétron salta, não sendo necessário esperar para acumular a energia suficiente para o salto.

1. A Teoria do Quantum.

O físico alemão Max Planck, postou que: "A energia que irradia com freqüência ‘f’, só pode ser emitida ou absorvida em quantidades discretas (quantum), múltiplos inteiros de ‘hf’, sendo o ‘h’ a constante universal de Planck (6,6 x 10-34 J.s)."Energia esta expressa na forma: E = h.f

a- Um fótons são partículas de energia eletromagnética,pacotes de energia que são denominados de quanta.

b- Os fótons têm energia diferente. Os "quanta" de luz violeta são mais energéticos do que os de luz amarela, devido haver uma diferença de comprimento de onda, logo maior freqüência.

c- Fontes luminosas que emitam luz de mesma freqüência emitem fótons de igual energia.

d- Fontes com diferentes intensidades luminosas podem ter fótons com a mesma energia, se os mesmos tiverem a mesma freqüência.

1.2-Dualidade onda-partícula.

Tal fenômeno foi percebido por Hertz, em ocasião da descoberta das ondas de rádio e das microondas. Até aquele momento, não era possível de explicar tal fenômeno a partir do modelo que considerava a luz como uma mera onda.

Albert Einstein, então elucidou tal problema ao publicar um artigo que explicava ao tratar a luz como uma onda e ao mesmo tempo partícula.

Apenas assim foi possível descrever, na física clássica, os fenômenos ondulatórios, de interferência, polarização, refração e difração e também fenômenos corpusculares como efeito fotoelétrico e efeito Compton.

Em física quântica os modelos corpusculares e ondulatórios são de extrema essencialidade para descrever completamente qualquer ente físico.

docsity.com

A isto é referido a expressão: dualidade onda-partícula.

Como exemplos têm os fenômenos ondulatórios de interferência, polarização, refração e difração, a radiação eletromagnética que necessitam de serem descritos em termos de um modelo ondulatório, e nos efeitos fotoelétrico e Compton, a radiação eletromagnética necessitam de serem escritos em termos de um modelo corpuscular.

2.Teoria do Efeito Fotoelétrico

Não resultou nenhuma das tentativas, feitas no sentido de explicar o efeito fotoelétrico com base nas leis de Maxwell ( segundo as quais a luz é uma onda electromagnética distribuída continuamente no espaço). Era impossível compreender porque é que a energia dos elétrons fotoelétricos é determinada apenas pela freqüência da luz, nem perceber a causa pela qual só quando o comprimento de onda é pequeno a luz se torna capaz de arrancar elétrons.

O esclarecimento do efeito fotoelétrico foi dado em 1905 por Alberto Einstein que desenvolveu a idéia de Planck sobre a emissão intermitente de luz. Nas leis experimentais do efeito fotoelétrico, Einstein viu uma prova evidente de que a luz tem uma estrutura intermitente e é absorvida em porções independentes. A energia E de cada uma das porções de emissão, de acordo com a hipótese de Planck, é proporcional à freqüência.

E = hf , onde h é a constante de Planck. ( 1 )

O fato de, como provou Planck, a luz ser emitida em porções, ainda não constitui uma confirmação definitiva do caráter descontínuo da estrutura da própria luz. Repara-se que a chuva também cai na terra sob a forma de gotas, o que não quer dizer que a água nos rios e lagos seja constituída por gotas, isto é, quantidades pequenas independentes. Apenas o efeito fotoelétrico permite pôr em evidência a estrutura descontínua da luz: a porção de energia luminosa E = hv contínua a manter a sua integridade, de tal modo, que essa dada porção de luz, quando é absorvida, tem de absorver-se toda de uma vez. A energia E de cada uma das porções de emissão é dada pela fórmula ( 1).

A energia cinética do elétron fotoelétrico pode ser calculada aplicando a lei da conservação de energia. A energia de uma porção de luz , hf permite realizar o trabalho de arranque W, isto é, o trabalho indispensável para arrancar um elétron do seio do metal e comunicar-lhe uma certa energia cinética. Por conseguinte,

( 2 )

Esta equação permite esclarecer todos os fatos fundamentais relacionados com o efeito fotoelétrico. A intensidade da luz, segundo Einstein, é proporcional ao número de quantos (porções) de energia contido no feixe luminoso e, por conseguinte, determina o número de elétrons arrancados da superfície metálica. A velocidade dos elétrons, conforme ( 2) , é dada

docsity.com

apenas pela freqüência da luz e pelo trabalho de arranque, que depende da natureza do metal e da qualidade da sua superfície. Atenda-se a que a velocidade dos elétrons não depende da intensidade da luz.

Para uma dada substância, o efeito fotoelétrico pode observar-se apenas no caso de a freqüência f da luz ser superior ao valor mínimo f min . Convém reparar que para se poder arrancar um elétron do metal, mesmo sem lhe comunicar energia cinética, há que realizar o trabalho de arranque W. Portanto, a energia de um quanto ( quantum) deve ser superior a este trabalho:

hf > W

A freqüência limite f min tem o nome de limite vermelho do efeito fotoelétrico e calcula-se pela seguinte fórmula:

O trabalho de arranque W depende da natureza da substância. Portanto, a freqüência limite f min do efeito fotoelétrico ( dito limite vermelho) varia de substância para substância.

Por exemplo, ao limite vermelho do zinco corresponde o comprimento de onda l max = 3,7 . 10-7 m ( radiação ultravioleta). É precisamente por isso se explica o fato de efeito fotoelétrico cessar quando se interpõe uma lâmina de vidro, capaz de deter raios ultravioletas.

O trabalho de arranque no alumínio ou no ferro é maior do que no zinco, razão por que na experiência de 1 se utilizou uma lâmina de zinco. Nos metais alcalinos, pelo contrário, o trabalho de arranque é menor, ao passo que o comprimento de onda l max correspondente ao limite vermelho é maior. Assim, por exemplo, relativamente ao sódio verifica-se l max = 6,8 . 10-7 m.

Através da equação de Einstein ( 2) é possível calcular a constante de Planck h. Para tal há que determinar experimentalmente a freqüência v da luz, o trabalho de arranque W e avaliar a energia cinética dos elétrons fotoelétricos. Avaliações e cálculos apropriados mostram que h = 6,63 x 10-34 J.s. O mesmo valor numérico foi obtido por Planck durante o estudo teórico de outro fenômeno diferente que é a radiação térmica. O fato de terem coincidido os valores da constante de Planck obtidos por métodos diferentes, confirma a certeza da hipótese acerca do caráter descontínuo da emissão e absorção da luz pelas substâncias

Para se obter uma idéia mais completa sobre o efeito fotoelétrico é necessário determinar de que é que depende o número de elétrons (foto elétrons) emitidos, sob a ação da luz, por uma superfície e a velocidade ou energia cinética desses elétrons. Com este objetivo foram levadas a cabo investigações experimentais, que passamos a descrever. Colocam-se dois elétrodos num balão de vidro do qual se retirou previamente o ar (fig. 2). Num dos elétrodos, através de uma "janela" de quartzo, transparente não só para a luz visível como também para a radiação ultravioleta, incidem os raios de luz. Com a ajuda de um potenciômetro faz-se variar a diferença

docsity.com

de potencial entre os elétrodos, medindo-a por meio de um voltímetro. O pólo negativo da pilha liga-se ao elétrodo iluminado. Sob a ação da luz, este elétrodo emite elétrons que, ao movimentarem-se no campo elétrico, criam corrente elétricas. Quando o potencial é pequeno, nem todos os elétrons atingem o outro elétrodo. Se aumentar a diferença de potencial entre os elétrodos e não se alterar o feixe de luz, a intensidade da corrente aumenta, atinge o valor máximo, depois do que deixa de crescer (fig. 3). O valor máximo da intensidade da corrente I chama-se corrente de saturação. A corrente de saturação é determinada pelo número de elétrons emitidos num segundo pelo eletrodo iluminado.

Mudando, nesta experiência, o feixe luminoso, determinou-se que o número de elétrons emitidos pela superfície do metal num segundo é diretamente proporcional à energia da onda de luz, absorvida durante o mesmo intervalo de tempo. Neste fato não há nada de inesperado, já que quanto maior é a energia do feixe de luz, mais eficaz se torna a sua ação.

Passemos agora à medição da energia cinético ( ou velocidade) dos elétrons. No gráfico da fig. 3, vê-se que a intensidade da corrente fotoelétrica é diferente de zero mesmo quando a diferença de potencial é nula. Isto significa que, mesmo na ausência de diferença de potencial, uma parte dos elétrons atinge o elétrodo direto (fig. 2). Se alterar a polaridade da bateria, a intensidade da corrente diminui até se anular, quando o potencial de polaridade inversa atinge o valor Up. Isto significa que os elétrons emitidos são detidos e forçados a valor para trás, sob a ação do campo elétrico.

O potencial de paragem Up depende do valor máximo da energia cinética que os elétrons emitidos atingem sob a ação da luz. A medição do potencial de paragem e o teorema da energia cinética permitem calcular energia cinética máxima dos elétrons:

Verificou-se experimentalmente que o potencial de paragem não depende da intensidade da luz ( energia transmitida ao elétrodo por unidade de tempo). Não muda, portanto, também a energia cinética dos elétrons. Do ponto de vista da teoria ondulatória, este fato é incompreensível já que, quanto maior for a intensidade da luz, maiores são as forças que se exercem sobre os elétrons por parte do campo eletromagnético da onda luminosa e, portanto, mais energia deveria ser transmitida aos elétrons.

Verificou-se experimentalmente que a energia cinética dos elétrons emitidos sob a ação da luz só depende da freqüência da luz. A energia cinética máxima dos fotoelétrons é proporcional à freqüência da luz e não depende da intensidade desta. O efeito fotoelétrico não se verifica quando a freqüência da luz é menor do que um dado valor mínimo vmin , dependente do material do eléctrodo.

|

|

docsity.com

3. Aplicações do Efeito Fotoelétrico

A descoberta do efeito fotoelétrico teve grande importância para a compreensão mais profunda da natureza da luz. Porém, o valor da ciência consiste não só em esclarecer-nos a estrutura complexa do mundo que nos rodeia, como em fornecer-nos os meios que permitem aperfeiçoar a produção e melhorar as condições de trabalho e de vida da sociedade.

Graças ao efeito fotoelétrico tornou-se possível o cinema falado , assim como a transmissão de imagens animadas (televisão). O emprego de aparelhos fotoelétricos permitiu construir maquinaria capaz de produzir peças sem intervenção alguma do homem. Os aparelhos cujo funcionamento assenta no aproveitamento do efeito fotoelétrico controlam o tamanho das peças melhor do que o pode fazer qualquer operário permitir acender e desligar automaticamente a iluminação de ruas, os faróis, etc.

Tudo isto tornou-se possível devido à invenção de aparelhos especiais, chamados células fotoelétricas, em que a energia da luz controla a energia da corrente elétrica ou se transforma em corrente elétrica.

Uma célula fotoelétrica moderna consta de um balão de vidro cuja superfície interna está revestida, em parte, de uma camada fina de metal com pequeno trabalho de arranque ( fig. 4) . É o cátodo. Através da parte transparente do balão, dita "janelinha", a luz penetra no interior dela. No centro da bola há uma chapa metálica que é o ânodo e serve para captar elétrons fotoelétricos. O ânodo liga-se ao pólo positivo de uma pilha. As células fotoelétricas modernas reagem à luz visível e até aos raios infravermelhos.

Fig. 4 | Fig. 5 |

Quando a luz incide no cátodo da célula fotoelétrica, no circuito produz-se uma corrente elétrica que aciona um relé apropriado. A combinação da célula fotoelétrica com um relé permite construir um sem-número de dispositivos capazes de ver, distinguir objetos. Os aparelhos de controlo automático de entrada no metro constituem um exemplo de tais sistemas. Esses aparelhos acionam uma barreira que impede o avanço do passageiro, caso este atravesse o feixe luminoso sem ter previamente introduzido a moeda necessária.

Os aparelhos deste tipo tornam possível a prevenção de acidentes. Por exemplo, nas empresas industriais uma célula fotoelétrica faz parar quase instantaneamente uma prensa potente e de grande porte se, digamos, o braço dum operário se encontrar, por casualidade, na zona de perigo.

A figura 5 esquematiza uma célula fotoelétrica. Quando a luz incide na célula, no circuito da pilha Pi1 produz-se uma corrente elétrica de pequena intensidade que atravessa a resistência R cujas extremidades estão ligadas à grelha e ao cátodo do tríodo T. O potencial do ponto G

docsity.com

(grelha) é inferior ao do ponto C ( cátodo) . A válvula, nestas condições, não deixa passar a corrente elétrica e, portanto, no circuito anódico do tríodo não há corrente. Se a mão ou o braço do operário se encontrar, por casualidade ou negligência, na zona de perigo, faz com que seja cortado o fluxo luminoso que normalmente incide na célula fotoelétrica. A válvula fica aberta e através do enrolamento do relé eletromagnético ligado ao circuito anódico passa a corrente elétrica, acionando o relé cujos contatos fecham o circuito de alimentação do mecanismo responsável por parar a prensa.

Uma célula fotoelétrica permite reconstituir os sons registrados nas películas do cinematógrafo.

Além do efeito fotoelétrico, estudado neste capítulo, dito efeito fotoelétrico externo, existe também o chamado efeito fotoelétrico interno, próprio dos semicondutores, muito utilizado, por exemplo, nas resistências fotoelétricas, isto é, aparelhos elétricos cuja resistência depende da intensidade da iluminação. Aplicam-se igualmente nos aparelhos fotoelétricos semicondutores que transformam, de forma direta, a energia luminosa em energia elétrica. Tais aparelhos podem servir de fonte de corrente elétrica, permitindo avaliar a intensidade da iluminação, por exemplo, em fotômetros. No mesmo princípio assenta o funcionamento das pilhas solares, de que estão munidas todas as naves cósmicas.

* METODOLOGIA

O projeto será desenvolvido em 04(quatro) partes sendo essas:

1. Aulas teóricas conceitual

2. Aulas expositivas (recursos de vídeos) e discussão sobre o assunto

3. Pesquisas sobre os assuntos abordados

4. Exposição de mural informativo sobre o efeito fotoelétrico e suas aplicações.

1. Aula Conceitual.

Esta etapa consiste em ministrar os conceitos primários da física quântica, a história do efeito fotoelétrico e seus principais pesquisadores na época, Albert Einstein, Marx Planck, H. Hertz, Comentar sobre a história da física, seus principais teoremas do assunto abordado.

2. Aulas Expositivas e discussão sobre o assunto

docsity.com

Esta etapa consiste em Trabalhar com recursos audiovisuais, passando filmes em DVD sobre o assunto a ser abordado, vídeos informativos sobre o fenômeno do efeito fotoelétrico, onde os alunos possam identificar tais fenômenos, analisar possíveis teorias.

3. Pesquisas sobre os assuntos abordados.

Esta etapa os alunos deverão fazer pesquisas sobre os assuntos estudados na teoria do efeito fotoelétrico, as principais aplicações do efeito fotoelétrico, sobre células fotoelétricas e a importância desse fenômeno para a sociedade.

4. Exposição de Mural Informativo sobre a teoria do efeito fotoelétrico

Nesta etapa, os alunos irão montar um mural sobre tudo que aprenderam durante as aulas conceituais, expositivas e suas pesquisas, adicionando ao mural a história e seus principais pesquisadores, os principais equipamento que utilizam esse fenômeno, para informar sobre a teoria do efeito fotoelétrico e quais os benefícios que o fenômeno traz para a sociedade. E apresentação de seminários sobre o assunto estudados.

* CRONOGRAMA

aula | data | Atividade |

01 | 01/06/2011 | Quarta | Aula teórica e conceitual sobre o efeito fotoelétrico |

02 | 03/06/2011 | Sexta | Aula teórica e conceitual sobre o efeito fotoelétrico |

03 | 06/06/2011 | Segunda | Aulas expositivas utilizando recursos audiovisuais |

04 | 08/06 | Quarta | Pesquisas adicionais de informações sobre o assunto |

05 | 10/06 | Sexta | Pesquisas adicionais de informações sobre o assunto |

06 | 13/06 | Segunda | Confecções de murais informativos sobre o tema |

07 | 15/06 | Quarta | Confecções de murais informativos sobre o tema |

08 | 17/06 | Sexta | Elaboração de seminário |

docsity.com

09 | 20/06 | Segunda | Elaboração de seminários |

10 | 22/06 | Quarta | Apresentação de seminário (sobre o tema) |

CONSIDERAÇÕES FINAIS

Este trabalho teve como finalidade mostrar a evolução da ciência e tecnologia no cotidiano, mostrando as suas aplicações e utilidades na sociedade, tendo em vista este trabalho informativo, o efeito fotoelétrico é um grande avanço na tecnologia da nossa sociedade, sendo ele usado direta ou indiretamente em vários setores, desde uma simples lâmpada de porte à grande geradores de energia solares.

Ainda há varias aplicações que podem ser descobertas ou avanços a serem estudados sobre o efeito Fotoelétrico que podem beneficiar o bem-estar da sociedade.

Bibliografia

FÍSICA- D. Halliday e R. Resnick 4ª Edição, LTC Editôra

http://www.fisica.net/quantica/curso/efeito_fotoeletrico_introducao.php

http://www.algosobre.com.br/index2.php?option=com_content&do_pdf=1&id=127

docsity.com

comentários (0)
Até o momento nenhum comentário
Seja o primeiro a comentar!
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome