Grafos - Exercícios - Matemática, Notas de estudo de Matemática. Centro Universitário de Caratinga (UNEC)
Brasilia80
Brasilia8011 de Março de 2013

Grafos - Exercícios - Matemática, Notas de estudo de Matemática. Centro Universitário de Caratinga (UNEC)

PDF (273.2 KB)
5 páginas
554Número de visitas
Descrição
Apostilas e exercicios de Matematica sobre o estudo dos Grafos.
20pontos
Pontos de download necessários para baixar
este documento
baixar o documento
Pré-visualização3 páginas / 5
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo

Lista de Exercícios 9 Grafos

UFMG/ICEx/DCC DCC111 – Matemática Discreta

Ciências Exatas & Engenharias 1o Semestre de 2012

1. O grafo de interseção de uma coleção de conjuntos A1, A2, . . . , An é o grafo que tem um vértice para cada um dos conjuntos da coleção e tem uma aresta conectando os vértices se esses conjuntos têm uma interseção não vazia. Construa o grafo de interseção para as seguintes coleções de conjuntos.

(a)

A1 = {0, 2, 4, 6, 8} A2 = {0, 1, 2, 3, 4} A3 = {1, 3, 5, 7, 9} A4 = {5, 6, 7, 8, 9} A5 = {0, 1, 8, 9}

(b)

A1 = {. . . ,−4,−3,−2,−1, 0} A2 = {. . . ,−2,−1, 0, 1, 2, . . .} A3 = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .} A4 = {. . . ,−5,−3,−1, 1, 3, 5, . . .} A5 = {. . . ,−6,−3, 0, 3, 6, . . .}

(c)

A1 = {x|x < 0} A2 = {x| − 1 < x < 0} A3 = {x|0 < x < 1} A4 = {x| − 1 < x < 1} A5 = {x|x > −1} A6 = R

2. Pode haver um grafo simples com 15 vértices, cada um com grau 5?

3. Determine se cada um dos grafos abaixo é bipartido.

(a)

e

c d

a b

(b)

b

a c

de

1

docsity.com

(c) f

a

b c

d

e

(d) f

a

b c

d

e

(e) f

a

b c

d

e

4. Quantos vértices e quantas arestas têm os grafos abaixo?

(a) Kn (grafo completo)

(b) Km,n (grafo bipartido completo)

(c) Cn (grafo ciclo)

(d) Qn (grafo cubo)

(e) Wn (grafo roda)

5. Quantas arestas tem um grafo com vértices de graus 5, 2, 2, 2, 2, 1? Desenhe um possível grafo.

6. Existe um grafo simples com cinco vértices dos seguintes graus? Se existir, desenhe um possível grafo.

(a) 3, 3, 3, 3, 2

(b) 1, 2, 3, 4, 5

(c) 1, 2, 3, 4, 4

(d) 3, 4, 3, 4, 3

(e) 0, 1, 2, 2, 3

(f) 1, 1, 1, 1, 1

7. Quantos subgrafos com pelo menos um vértice tem K3?

8. Desenhe todos os subgrafos do grafo abaixo.

c

a b

d

9. Para que valores de n os grafos abaixo são regulares?

(a) Kn

2

docsity.com

(b) Cn (c) Wn (d) Qn

10. Quantos vértices tem um grafo regular de grau 4 com 10 arestas?

11. O grafo complementar G de um grafo simples G tem os mesmos vértices de G. Dois vértices são adjacentes em G se, e somente se, eles não são adjacentes em G. Determine os seguintes grafos.

(a) Kn (b) Km,n (c) Cn (d) Qn

12. Se o grafo simples G tem v vértices e e arestas, quantas arestas tem G?

13. Mostre que se G é um grafo simples com n vértices, então G ∪G = Kn.

14. O grafo reverso de um grafo dirigido G = (V,E), representado por Gr, é o grafo dirigido (V, F ) onde (u, v) ∈ F , se, e somente se, (v, u) ∈ E. Desenhe os grafos Gr correspondentes aos seguintes grafos:

(a)

ea

b c

d

(b)

d

a

b c

e

(c)

e

b ca

f

d

15. Seja G um grafo dirigido. Mostre que G = Gr se, e somente se, a relação associada com G é simétrica.

16. Represente a matriz de adjacência do grafo Q3.

17. Seja uma matriz simétrica quadrada formada apenas por 0’s e 1’s que tem apenas 0’s na diagonal principal. Essa matriz pode representar a matriz de adjacência de um grafo simples?

18. O que representa a soma das entradas de uma coluna de uma matriz de adjacência de um grafo não dirigido? E de um grafo dirigido?

19. O que representa a soma das entradas de uma coluna de uma matriz de incidência de um grafo não dirigido?

3

docsity.com

20. Os pares de grafos abaixo são isomorfos?

(a) u 3u 5u 6u 8u

4u 7u

2u

1v 4v 5v 6v 8v

7v

2v

3v

1

(b)

u

2u

3u

4u5u

6u 7u

8u10u

9u 1v

2v

3v

4v

5v

6v 7v

8v

9v

10v

1

21. Mostre que o isomorfismo de grafos simples é uma relação de equivalência.

22. Mostre que os vértices de um grafo bipartido com dois ou mais vértices podem ser ordenados de tal forma que a sua matriz de adjacência tem a forma [

0 A B 0

] onde as quatro entradas acima são blocos retangulares.

23. Um grafo simples G é dito ser auto-complementar se G e G são isomorfos. Apresente um grafo simples auto-complementar com cinco vértices.

24. Para que inteiros n o grafo Cn é auto-complementar?

25. Seja G = (V,E) um grafo simples. Seja R uma relação em V formada por pares de vértices (u, v) tal que existe um trajeto (path) de u para v ou tal que u = v. Mostre que R é uma relação de equivalência.

26. Apresente um grafo que tenha um circuito Euleriano e um circuito Hamiltoniano mas que não sejam idênticos.

27. Um grafo possui oito vértices e seis arestas? Esse grafo é conexo? Justifique a resposta.

28. Nos grafos abaixo, assuma que cada vértice possui um identificador único vi, i ≥ 1. Cada variável usada é um número inteiro positivo maior ou igual a 1 ou um outro valor específico, conforme o caso. Para cada letra, diga quantas soluções distintas podem ser obtidas.

(a) Árvores geradoras de um grafo Cn, n ≥ 3. (b) Circuitos Hamiltonianos de um grafo Kn, n ≥ 3, começando num vértice vi, 1 ≤ i ≤ n. (c) Circuitos Eulerianos de um grafo Km,m, m ≥ 2, m = 2a e começando num vértice vi, 1 ≤ i ≤ 2m.

Grafo Km,m, m ≥ 2, m = 2a é o grafo bipartido completo sendo que m é um número par. Os grafos bipartidos completos que podemos ter são da forma K2,2, K4,4, K6,6, . . .. Ou seja, cada vértice está conectado a exatamente m outros vértices. Como m é par, o grau de cada vértice é par e, assim, é possível haver circuitos Eulerianos.

4

docsity.com

29. Determine os componentes fortemente conexos de cada grafo dirigido abaixo.

(a)

d

b ca

e

(b)

f

b ca

i h

d e

g

30. Seja uma árvore com n vértices.

(a) Quantas arestas têm essa árvore?

(b) Prove esse resultado por indução matemática.

5

docsity.com

comentários (0)
Até o momento nenhum comentário
Seja o primeiro a comentar!
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome