Ligação Iônica - Apostilas - Quimica, Notas de estudo de Química. Universidade Federal de Minas Gerais (UFMG)
Maraca
Maraca1 de Março de 2013

Ligação Iônica - Apostilas - Quimica, Notas de estudo de Química. Universidade Federal de Minas Gerais (UFMG)

PDF (159.8 KB)
4 páginas
1000+Número de visitas
Descrição
Apostilas sobre o estudo da ligação iônica, ligação covalente, ligação metálica.
20pontos
Pontos de download necessários para baixar
este documento
baixar o documento
Pré-visualização3 páginas / 4
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo

Ligação Iônica

Ligação iônica é um tipo de ligação química baseada na atração eletrostática entre dois íons carregados com cargas opostas. Na formação da ligação iônica, um metal doa um elétron, devido a sua baixa eletronegatividade formando um íon positivo ou cátion. No sal de cozinha, as ligações entre os íons sódio e cloreto são iônicas. Geralmente ligações iônicas se formam entre um metal e um ametal. O átomo do ametal tem uma configuração eletrônica semelhante a de um gás nobre, quase totalmente preenchida de elétrons. Eles têm alta eletronegatividade, e facilmente ganham elétrons formando um íon negativo ou ânion. Os dois ou mais íons logo se atraem devido a forças eletrostáticas. Ligações desse tipo são mais fortes que ligações de hidrogênio, e têm força menor que as ligações covalentes.

A ligação iônica ocorre somente se a variação da energia total da reação é favorável—quando os átomos ligados tem energia mais baixa que os átomos livres. Quanto maior a variação da energia total, mais forte se torna a ligação.

Estudos revelaram que não existe ligação iônica pura. Todas ligações iônicas tem um grau de ligação covalente ou ligação metálica. Quanto maior a diferença na eletronegatividade entre dois átomos mais iônica se torna a ligação. Compostos iônicos conduzem eletricidade quando fundidos ou em solução. Eles geralmente tem um alto ponto de fusão e tendem a ser solúveis em água.

Os íons em cristais de compostos predominantemente iônicos são esféricos, mas, se o íon positivo é pequeno e/ou altamente carregado, será distorcida a nuvem eletrônica do íon negativo. Essa polarização do íon negativo leva a criação de uma densidade de carga extra entre os dois núcleos atômicos, i.e., a covalência parcial. Íons negativos grandes são mais facilmente polarizados, mas normalmente o efeito só tem relevância quando íons positivos com cargas de 3+ (ex., Al3+) estão envolvidos (ex., AlCl3 puro é uma molécula covalente). No entanto, íons com carga 2+ (Be2+) ou até com carga 1+ (Li+) demonstram algum grau de polarização devido a seu pequeno raio atômico (ex., LiI é iônico mas tem algum caráter covalente). O Grau de Polarização depende da relação de carga e do tamanho do íon, geralmente chamada de densidade de carga.

Em uma ligação iônica, os átomos estão ligados pela atração de íons com cargas opostas, enquanto que em uma ligação covalente, os átomos estão ligados por compartilhar elétrons. Na ligação covalente, a geometria molecular de cada átomo é determinada pelas regras da VSEPR (Valence Shell Electron Pair Repulsion Theory - Teoria da repulsão entre os pares de elétrons da camada de valência), enquanto que, em materiais iônicos, a geometria segue as regras do

docsity.com

empacotamento máximo e a resultante das cargas desses íons no empacotamente tende ser nula.

Há, no entanto, uma tênue linha divisória entre a ligação covalente e a iônica. Com relação à eletronegatividade dos elementos participantes, Linus Pauling estabeleceu que se a diferença de eletronegatividade(ΔE) for superior à 1,7, a ligação é iônica. No entanto, pode-se dizer que a ligação Carbono-Bromo (ΔE < 1,65) tem caráter levemente iônico.

[pic]

[pic]

Ligação Covalente

A ligação covalente é um tipo de ligação química caracterizada pelo compartilhamento de um ou mais pares de elétrons entre átomos, causando uma atração mútua entre eles, que mantêm a molécula resultante unida. O nome ligação covalente surgiu em 1939.[1]

Átomos tendem a compartilhar elétrons de modo que suas camadas eletrónicas externas sejam preenchidas e eles adquiram uma distribuição eletrónica mais estável. A força dessas ligações é maior que a das interações intermoleculares e comparável à da ligação iônica. Existem dois tipos principais, a ligação-σ (ligação sigma) e a ligação-π (ligação pi)

Ligações covalentes normalmente ocorrem entre átomos com eletronegatividades similares e altas (geralmente entre dois não-metais), dos quais remover completamente um elétron requer muita energia.

Um tipo especial de ligação covalente é a ligação covalente dativa, também conhecida como ligação covalente coordenada, que ocorre quando um único átomo fornece ambos os elétrons da ligação.

Esse tipo de ligação tende a ser mais forte que outros tipos de ligações, como a iônica. Ao contrário das ligações iônicas, nas quais os íons são mantidos unidos por atração coulômbica não direcional, ligações covalentes são altamente direcionais. Como resultado, Moléculas covalentemente ligadas tendem a formar-se em um número relativamente pequeno de formas características, exibindo ângulos de ligação específicos.

docsity.com

Existem duas teorias que explicam como se formam as ligações covalentes entre átomos. A teoria da ligação de valência e a teoria das orbitais moleculares. Esta última é mais aprofundada, embora a primeira seja suficiente para uma compreensão simplificada da estrutura das moléculas.

Ligações múltiplas entre átomos que usam junto 9.453 electrões se chamam monovalentes, 9.454, bivalentes e 9.455, trivalentes.

Usando a mecânica quântica, é possível determinar a estrutura eletrônica, os níveis de energia, ângulos de ligação, comprimentos de ligação, momentos apolares, e espectros de freqüência de moléculas simples com baixo grau de precisão. Atualmente, comprimentos e ângulos de ligações podem ser calculados tão precisamente quanto podem ser medidos (precisão da ordem de poucos picômetros para comprimento e poucos graus para ângulos). Para o caso de pequenas moléculas, cálculos de energia são suficientemente precisos e úteis na determinação de calores de formação e energias de ativação.

[pic]

Ligação Metálica

Num sólido, os átomos estão dispostos de maneira variada, mas sempre próximos uns aos outros, compondo um retículo cristalino. Enquanto certos corpos apresentam os elétrons bem presos aos átomos, em outros, algumas dessas partículas permanecem com certa liberdade de se movimentarem no cristal. É o que diferencia, em termos de condutibilidade elétrica, os corpos condutores dos isolantes. Nos corpos condutores, muitos dos elétrons se movimentam livremente no cristal, de forma desordenada, isto é, em todas as direções. E, justamente por ser caótico, esse movimento não resulta em qualquer deslocamento de carga de um lado a outro do cristal.

Aquecendo-se a ponta de uma barra de metal, colocam-se em agitação os átomos que a formam e os que lhe estão próximos. Os elétrons aumentam suas oscilações e a energia se propaga aos átomos mais internos. Neste tipo de cristal os elétrons livres servem de meio de propagação do calor - chocam-se com os átomos mais velozes, aceleram-se e vão aumentar a oscilação dos mais lentos. A possibilidade de melhor condutividade térmica, portanto, depende da presença de elétrons livres no cristal. Estudando-se o fenômeno da condutibilidade elétrica, nota-se que, quando é aplicada uma diferença de potencial, por meio de uma fonte elétrica às paredes de um cristal metálico, os elétrons livres adquirem um movimento ordenado: passam a mover-se do pólo negativo para o pólo positivo, formando um fluxo eletrônico orientado na superfície do

docsity.com

metal, pois como se trabalha com cargas de mesmo sinal, estas procuram a maior distância possível entre elas. Quanto mais elétrons livres no condutor, melhor a condução se dá.

Os átomos de um metal têm grande tendência a perder elétrons da última camada e transformar-se em cátions. Esses elétrons, entretanto, são simultaneamente atraídos por outros íons, que então o perdem novamente e assim por diante. Por isso, apesar de predominarem íons positivos e elétrons livres, diz-se que os átomos de um metal são eletricamente neutros.

Os átomos mantêm-se no interior da rede não só por implicações geométricas, mas também por apresentarem um tipo peculiar de ligação química, denominada ligação metálica. A união dos átomos que ocupam os “nós” de uma rede cristalina dá-se por meio dos elétrons de valência que compartilham (os situados em camadas eletrônicas não são completamente cheias). A disposição resultante é a de uma malha formada por íons positivos e uma nuvem eletrônica.

Resumindo, a ligação metálica ocorre entre dois átomos de metais. Nessa ligação todos os átomos envolvidos perdem elétrons de suas camadas mais externas, que se deslocam mais ou menos livremente entre eles, formando uma nuvem eletrônica (também conhecida como "mar de elétrons").

docsity.com

comentários (0)
Até o momento nenhum comentário
Seja o primeiro a comentar!
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome