Matrizes e Determinantes - Apostilas - Matematica, Notas de estudo de Matemática. Centro Federal de Educação Tecnológico (CEFET-PA)
Carnaval2000
Carnaval20006 de Março de 2013

Matrizes e Determinantes - Apostilas - Matematica, Notas de estudo de Matemática. Centro Federal de Educação Tecnológico (CEFET-PA)

PDF (157.9 KB)
5 páginas
1000+Número de visitas
Descrição
Apostilas e exercicios de Matemática sobre o estudo das matrizes e determinantes, definições.
20pontos
Pontos de download necessários para baixar
este documento
baixar o documento
Pré-visualização3 páginas / 5
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo

Determinantes

Determinante de matriz de ordem 1, 2 ou 3

Podemos calcular o determinante de qualquer matriz desde que essa seja quadrada, ou seja, que a matriz tenha o mesmo número de linhas e de colunas (seja uma matriz de ordem n x n).

Podemos dizer que determinante de uma matriz quadrada é o seu valor numérico.

Os elementos de uma matriz podem ser colocados entre parênteses, colchetes ou entre duas barras duplas e os elementos dos determinantes são colocados entre duas barras.

Matriz de ordem 1

Quando uma matriz possui apenas um elemento ou possui apenas uma linha e uma coluna, dizemos que essa matriz é de ordem 1. Veja alguns exemplos:

Se A = [10], então o seu determinante será representado assim: det A = |10| = 10

Se B = (-25), então o seu determinante será representado assim: det B = |-25| = -25

Podemos concluir que o determinante de ordem 1 terá o seu valor numérico sempre igual ao seu elemento.

Matriz de ordem 2

Dada a matriz A de ordem dois A = , o seu determinante será calculado da seguinte forma:

docsity.com

O determinante de ordem dois possui uma diagonal principal e uma diagonal secundária.

O cálculo do seu valor numérico é feito pela diferença do produto da diagonal principal com o produto da diagonal secundária.

det A = = - 3 – (- 10) = - 3 + 10 = 7

Matriz de ordem 3

Dada a matriz de ordem 3, B = o valor numérico do seu determinante é calculado da seguinte forma:

Primeiro representamos essa matriz em forma de determinante e repetimos as duas primeiras colunas.

det B =

Depois calculamos os produtos das diagonais principais e os produtos das diagonais secundárias.

det B =

Deve-se pegar o oposto dos produtos das diagonais secundárias e somar com os produtos das diagonais principais.

Det B = 0 – 40 + 0 – 15 + 0 – 4 = -59

docsity.com

Essa regra utilizada no cálculo do determinante de matriz de ordem 3 é chamada de Regra de Sarrus.

Cofator de uma matriz

Compreender o cofator é um pré-requisito para o estudo do teorema de Laplace, que é utilizado para o cálculo de determinantes de matrizes quadradas de qualquer ordem (ordem 1, 2, 3, …, n).

Temos que cada elemento de uma matriz quadrada possui o seu respectivo cofator, sendo este cofator um valor numérico, que é obtido através da expressão a seguir:

Considere que A seja uma matriz quadrada qualquer:

O cofator do elemento aij desta matriz A é obtido da seguinte forma:

Devemos compreender os elementos dessa expressão. O valor Aij é justamente o cofator do elemento aij da matriz A, enquanto que Dij será o determinante da matriz obtida através da matriz A, entretanto você deverá excluir da matriz A os elementos da linha i e da coluna j. Façamos um exemplo para melhor compreensão dessa expressão do cofator.

Exemplo: Determine os cofatores dos elementos a11, a22, a33 da matriz A.

O cofator do elemento a11 será determinado pela seguinte expressão:

Portanto, devemos determinar o determinante da matriz D11, matriz obtida retirando a 1ª linha e 1ª coluna da matriz A.

Com isso, podemos calcular o cofator A11.

De maneira semelhante procederemos com os outros cofatores, veja:

Mesmo procedimento para o cofator A33:

docsity.com

Os procedimentos são todos iguais, mudando apenas o expoente do termo (-1) e os determinantes de cada matriz Dij. Compreendendo esses cálculos, o cálculo de determinantes pelo teorema de Laplace se torna extremamente fácil.

Multiplicação de Matrizes

A multiplicação de matrizes é realizada de acordo com a seguinte condição: o número de colunas da 1ª matriz deve ser igual ao número de linhas da 2ª matriz. Observe alguns modelos de matrizes que podem ser multiplicadas, considerando o formato m x n.

A4x3 * B3x1

A4x2 * B2x3

A1x2 * B2x2

A3x4 * B4x3

Nesse modelo de multiplicação, os métodos são mais complexos. Dessa forma, precisamos ter muita atenção na resolução de uma multiplicação de matrizes. Vamos através de exemplos, demonstrar como efetuar tais cálculos. A operação deverá ser feita multiplicando os membros da linha da 1º matriz pelos membros da coluna da 2º matriz, onde os elementos devem ser somados, constituindo um único item posicional da matriz. Observe um modelo padrão de multiplicação:

Exemplo 1

Realizamos uma multiplicação entre uma matriz A de ordem 2 x 3 por uma matriz B de ordem 3 x 2. Observe que a condição “o número de colunas da 1ª matriz deve ser igual ao número de linhas da 2ª matriz”, foi válida, pois 3 = 3. O interessante é que a matriz, produto da multiplicação, é de ordem 2 x 2, isto é, 2 linhas e 2 colunas, possuindo o mesmo número de linhas da 1ª e o mesmo número de colunas da 2ª.

docsity.com

Portanto, todas essas condições são observadas na multiplicação entre matrizes. Caso alguma dessas condições não seja válida, a operação da multiplicação estará efetuada de forma incorreta. Sempre que realizar multiplicação entre matrizes, faça de forma atenciosa, desenvolvendo completamente o processo, procurando não utilizar meios diretos para obter o resultado.

Exemplo 2

Biografia: http://www.brasilescola.com/matematica/multiplicacao-matrizes.htm

http://mundoeducacao.uol.com.br/matematica/matriz-determinantes.htm

docsity.com

comentários (0)
Até o momento nenhum comentário
Seja o primeiro a comentar!
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome