Probabilidades Numericas - Exercicios - Matematica, Notas de estudo de Matemática. Centro Federal de Educação Tecnológico (CEFET-PA)
Carnaval2000
Carnaval20006 de Março de 2013

Probabilidades Numericas - Exercicios - Matematica, Notas de estudo de Matemática. Centro Federal de Educação Tecnológico (CEFET-PA)

PDF (208.1 KB)
7 páginas
823Número de visitas
Descrição
Apostilas e exercicios de Matemática sobre o estudo das probabilidades numericas.
20pontos
Pontos de download necessários para baixar
este documento
baixar o documento
Pré-visualização3 páginas / 7
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo

1) Uma bola será retirada de uma sacola contendo 5 bolas verdes e 7 bolas amarelas. Qual a probabilidade desta bola ser verde? Neste exercício o espaço amostral possui 12 elementos, que é o número total de bolas, portanto a probabilidade de ser retirada uma bola verde está na razão de 5 para 12. Sendo S o espaço amostral e E o evento da retirada de uma bola verde, matematicamente podemos representar a resolução assim:

A probabilidade desta bola ser verde é 5/12 2) Três moedas são lançadas ao mesmo tempo. Qual é a probabilidade de as três moedas caírem com a mesma face para cima? Através do princípio fundamental da contagem podemos determinar o número total de agrupamentos ao lançarmos três moedas. Como cada moeda pode produzir dois resultados distintos, três moedas irão produzir 2 . 2 . 2 resultados distintos, ou seja, poderão produzir 8 resultados distintos. Este é o nosso espaço amostral. Dentre as 8 possibilidades do espaço amostral, o evento que representa todas as moedas com a mesma face para cima possui apenas 2 possibilidades, ou tudo cara ou tudo coroa, então a probabilidade será dada por: A probabilidade das três moedas caírem com a mesma face para cima é igual a 1/4, ou 0,25, ou ainda 25%. 3) Um casal pretende ter filhos. Sabe-se que a cada mês a probabilidade da mulher engravidar é de 20%. Qual é a probabilidade dela vir a engravidar somente no quarto mês de tentativas? Sabemos que a probabilidade da mulher engravidar em um mês é de 20%, que na forma decimal é igual a 0,2. A probabilidade dela não conseguir engravidar é igual a 1 - 0,2, ou seja, é igual a 0,8. Este exercício trata de eventos consecutivos e independentes (pelo menos enquanto ela não engravida), então a probabilidade de que todos eles ocorram, é dado pelo produto de todas as probabilidades individuais. Como a mulher só deve engravidar no quarto mês, então a probabilidade dos três meses anteriores deve ser igual à probabilidade dela não engravidar no mês, logo: 0,1024 multiplicado por 100% é igual a 10,24%. Então: A probabilidade de a mulher vir a engravidar somente no quarto mês é de 10,24%. 4) Um credor está à sua procura. A probabilidade dele encontrá-lo em casa é 0,4. Se ele fizer 5 tentativas, qual a probabilidade do credor lhe encontrar uma vez em casa? Ou o credor vai a sua casa e o encontra, ou ele vai e não o encontra, como em cada tentativa estamos tratando de um sucesso ou de um fracasso e não há outra possibilidade, além do fato de a probabilidade ser a mesma em todas as tentativas, vamos resolver o problema utilizando o termo geral do Binômio de Newton:

n é o número de tentativas de encontrá-lo, portanto n = 5. k é o número de tentativas nas quais ele o encontra, portanto k = 1. p é a probabilidade de você ser encontrado, logo p = 0,4. q é a probabilidade de você não ser encontrado, logo q = 1 - 0,4, ou seja, q = 0,6. Substituindo tais valores na fórmula temos:

O número binomial Então temos:

docsity.com

é assim resolvido:

Assim: A probabilidade de o credor o encontrar uma vez em casa é igual 0,2592. 5) Em uma caixa há 2 fichas amarelas, 5 fichas azuis e 7 fichas verdes. Se retirarmos uma única ficha, qual a probabilidade dela ser verde ou amarela? Na parte teórica vimos que a probabilidade da união de dois eventos pode ser calculada através da fórmula e no caso da intersecção dos eventos ser vazia, isto é, não haver elementos em comum aos dois eventos, podemos simplesmente utilizar . Ao somarmos a quantidade de fichas obtemos a quantidade 14. Esta quantidade é o número total de elementos do espaço amostral. Neste exercício os eventos obter ficha verde e obter ficha amarela são mutuamente exclusivos, pois a ocorrência de um impede a ocorrência do outro, não há elementos que fazem parte dos dois eventos. Não há bolas verdes que são também amarelas. Neste caso então podemos utilizar a fórmula: Note que esta fórmula nada mais é que a soma da probabilidade de cada um dos eventos. O evento de se obter ficha verde possui 7 elementos e o espaço amostral possui 14 elementos, que é o número total de fichas, então a probabilidade do evento obter ficha verde ocorrer é igual a 7/14:

Analogamente, a probabilidade do evento obter ficha amarela, que possui 2 elementos, é igual a

2/ 14:

Observe que poderíamos ter simplificado as probabilidades, quando então 7/14 passaria a somarmos as duas probabilidades precisamos que elas tenham um denominador comum:

1/ 2

e

2/ 14

docsity.com

a

1/ 7,

no entanto isto não foi feito, já que para

Este exercício foi resolvido através da fórmula da probabilidade da união de dois eventos para que você tivesse um exemplo da utilização da mesma e pudesse aprender quando utilizá-la, mas se você prestar atenção ao enunciado, poderá ver que poderíamos tê-lo resolvido de uma outra forma, que em alguns casos pode tornar a resolução mais rápida. Vejamos: Note que a probabilidade de se obter ficha azul é 5 em 14, ou seja, 5/14. Então a probabilidade de não se obter ficha azul é 9 em 14, pois:

docsity.com

O 1 que aparece na expressão acima se refere à probabilidade do espaço amostral. Note que utilizamos o conceito de evento complementar, pois se não tivermos uma ficha azul, só poderemos ter uma ficha verde ou uma ficha amarela, pois não há outra opção. A probabilidade de ela ser verde ou amarela é 9/14. 6) Alguns amigos estão em uma lanchonete. Sobre a mesa há duas travessas. Em uma delas há 3 pastéis e 5 coxinhas. Na outra há 2 coxinhas e 4 pastéis. Se ao acaso alguém escolher uma destas travessas e também ao acaso pegar um dos salgados, qual a probabilidade de se ter pegado um pastel? A probabilidade de escolhermos 1 dentre 2 travessas é igual 1/2. A probabilidade de escolhermos um pastel na primeira travessa é 3 em 8, ou seja, é 3/8 e como a probabilidade de escolhermos a primeira travessa é 1/2, temos: A probabilidade de escolhermos um pastel na segunda travessa é 4 em 6, isto é 4/6 e como a probabilidade de escolhermos a segunda travessa é igual a 1/2, temos: Então a probabilidade de escolhermos um pastel é igual a: A probabilidade de se ter pegado um pastel é

25

/48.

7) O jogo de dominó é composto de peças retangulares formadas pela junção de dois quadrados. Em cada quadrado há a indicação de um número, representado por uma certa quantidade de bolinhas, que variam de nenhuma a seis. O número total de combinações possíveis é de 28 peças. Se pegarmos uma peça qualquer, qual a probabilidade dela possuir ao menos um 3 ou 4 na sua face? Chamemos de A o evento da ocorrência de um 3: A = { (0, 3), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3) } Chamemos de B o evento da ocorrência de um 4: B = { (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) } Veja que o elemento (4, 3) integra os dois eventos, logo Calculando as probabilidades de A, B e da intersecção, temos: .

Finalmente para o cálculo da probabilidade desejada vamos utilizar a fórmula da probabilidade da união de dois eventos: Repare que 13 é o número total de peças que possuem 3 ou 4, desconsiderando-se a ocorrência que se repete (o (4 ,3) da intersecção dos dois eventos). A probabilidade de ela possuir ao menos um 3 ou 4 na sua face é 13/28. 8) Em uma caixa há 4 bolas verdes, 4 azuis, 4 vermelhas e 4 brancas. Se tirarmos sem reposição 4 bolas desta caixa, uma a uma, qual a probabilidade de tirarmos nesta ordem bolas nas cores verde, azul, vermelha e branca? No evento E1 a probabilidade de tirarmos uma bola verde é de 4 em 16:

Como não há reposição, a cada retirada o número de elementos do espaço amostral diminui em uma unidade. No evento E2 a probabilidade de tirarmos uma bola azul é de 4 em 15:

docsity.com

No evento E3 a probabilidade de tirarmos uma bola vermelha é de 4 em 14:

No evento E4 a probabilidade de tirarmos uma bola branca é de 4 em 13:

Finalmente a probabilidade de tirarmos as bolas conforme as restrições do enunciado é: A probabilidade é 8/1365. 9) Em uma escola de idiomas com 2000 alunos, 500 alunos fazem o curso de inglês, 300 fazem o curso de espanhol e 200 cursam ambos os cursos. Selecionando-se um estudante do curso de inglês, qual a probabilidade dele também estar cursando o curso de espanhol? Chamemos de A o evento que representa o curso de espanhol e B o evento que representa o curso de inglês. Podemos calcular a probabilidade de ocorrer A tendo ocorrido B através da fórmula:

Segundo o enunciado

e

, então:

Note que no caso da probabilidade condicional, ao invés de calcularmos a probabilidade em função do número de elementos do espaço amostral, a calculamos em função do número de elementos do evento que já ocorreu. A probabilidade do aluno também estar cursando o curso de espanhol é 2/5.

docsity.com

10) De uma sacola contendo 15 bolas numeradas de 1 a 15 retira-se uma bola. Qual é a probabilidade desta bola ser divisível por 3 ou divisível por 4? Vamos representar por E3 o evento da ocorrência das bolas divisíveis por 3: E3 = { 3, 6, 9, 12, 15 } E por E4 vamos representar o evento da ocorrência das bolas divisíveis por 4: E4 = { 4, 8, 12 } O espaço amostral é: S = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } A probabilidade de sair uma bola divisível por 3 é:

A probabilidade de sair uma bola divisível por 4 é:

Como estamos interessados em uma ocorrência ou em outra, devemos somar as probabilidades, mas como explicado no tópico união de dois eventos, devemos subtrair a probabilidade da intersecção, pois tais eventos não são mutuamente exclusivos. Como podemos ver, o número 12 está contido tanto em E3 quanto em E4, ou seja: A probabilidade da intersecção é:

Portanto: A probabilidade desta bola ser divisível por 3 ou divisível por 4 é 7/15.

docsity.com

docsity.com

comentários (0)
Até o momento nenhum comentário
Seja o primeiro a comentar!
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome