Vestibular de Matemática - Universidade do Estado do Rio de Janeiro - 2009 - UERJ, Notas de estudo de Matemática. Centro Universitário de Caratinga (UNEC)
Brasilia80
Brasilia8013 de Março de 2013

Vestibular de Matemática - Universidade do Estado do Rio de Janeiro - 2009 - UERJ, Notas de estudo de Matemática. Centro Universitário de Caratinga (UNEC)

PDF (654.2 KB)
12 páginas
701Número de visitas
Descrição
Vestibular de Matemática da Universidade do Estado do Rio de Janeiro do ano de 2009.
20pontos
Pontos de download necessários para baixar
este documento
baixar o documento
Pré-visualização3 páginas / 12
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo

2ªFase Exame Discursivo

Caderno de prova

Este caderno, com doze páginas numeradas seqüencialmente, contém dez questões de Matemática.

Não abra o caderno antes de receber autorização.

InSTrUÇÕeS

1. Verifique se você recebeu mais dois cadernos de prova.

2. Verifique se seu nome, seu número de inscrição e seu número do documento de identidade estão corretos nas sobrecapas dos três cadernos.

Se houver algum erro, notifique o fiscal.

3. Destaque, das sobrecapas, os comprovantes que têm seu nome e leve-os com você.

4. Ao receber autorização para abrir os cadernos, verifique se a impressão, a paginação e a numeração das questões estão corretas.

Se houver algum erro, notifique o fiscal.

5. Todas as respostas e o desenvolvimento das soluções, quando necessário, deverão ser apresentados nos espaços apropriados, com caneta azul ou preta.

Não serão consideradas as questões respondidas fora desses locais.

InForMaÇÕeS GeraIS

O tempo disponível para fazer as provas é de cinco horas. Nada mais poderá ser registrado após o término desse prazo.

Ao terminar, entregue os três cadernos ao fiscal.

Será eliminado do Vestibular Estadual 2008 o candidato que, durante as provas, utilizar máquinas ou relógios de calcular, aparelhos de reprodução de som ou imagem com ou sem fones de ouvido, telefones celulares ou fontes de consulta de qualquer espécie.

Será também eliminado o candidato que se ausentar da sala levando consigo qualquer material de prova.

BOA PROVA!

MaTeMáTICa

02/12/2007

docsity.com

2

questão 01

Com base na tabela, é possível formar a matriz quadrada A cujos elementos a ij representam o número de medalhas do

tipo j que o país i ganhou, sendo i e j pertencentes ao conjunto {1, 2, 3}.

Para fazer uma outra classificação desses países, são atribuídos às medalhas os seguintes valores:

– ouro: 3 pontos;

– prata: 2 pontos;

– bronze: 1 ponto.

Esses valores compõem a matriz

        

3 = 2

1 V

Determine, a partir do cálculo do produto AV, o número de pontos totais obtidos pelos três países separadamente.

Observe parte da tabela do quadro de medalhas dos Jogos Pan-americanos do Rio de Janeiro em 2007:

rascunho:

desenvolvimento e resposta:

docsity.com

Vestibular Estadual 2008 [Exame Discursivo] 3

matemática

questão 02

Um tabuleiro retangular com pregos dispostos em linhas e colunas igualmente espaçadas foi usado em uma aula sobre área de polígonos.

A figura abaixo representa o tabuleiro com um elástico fixado em quatro pregos indicados pelos pontos A, B, C e D.

Considere u a unidade de área equivalente ao menor quadrado que pode ser construído com vértices em quatro pregos do tabuleiro.

Calcule, em u, a área do quadrilátero ABCD formado pelo elástico.

rascunho:

desenvolvimento e resposta:

docsity.com

4

questão 03

O peso P de um objeto, a uma altura h acima do nível do mar, satisfaz a seguinte equação:

Sabe-se que P equivale a 81% de P 0 quando o objeto se encontra a uma altura h

1 .

Calcule, em função de r, o valor de h 1 .

P 0 : peso do objeto ao nível do mar

r: raio da Terra

rascunho:

desenvolvimento e resposta:

 =    r

P :P h r

2

0 +

docsity.com

Vestibular Estadual 2008 [Exame Discursivo] 5

matemática

questão 04

Uma fábrica de doces vende caixas com 50 unidades de bombons recheados com dois sabores, morango e caramelo. O custo de produção dos bombons de morango é de 10 centavos por unidade, enquanto o dos bombons de caramelo é de 20 centavos por unidade. Os demais custos de produção são desprezíveis.

Sabe-se que cada caixa é vendida por R$ 7,20 e que o valor de venda fornece um lucro de 20% sobre o custo de produção de cada bombom.

Calcule o número de bombons de cada sabor contidos em uma caixa.

rascunho:

desenvolvimento e resposta:

docsity.com

6

questão 05

Moedas idênticas de 10 centavos de real foram arrumadas sobre uma mesa, obedecendo à disposição apresentada no desenho: uma moeda no centro e as demais formando camadas tangentes.

Considerando que a última camada é composta por 84 moedas, calcule a quantia, em reais, do total de moedas usadas nessa arrumação.

rascunho:

desenvolvimento e resposta:

docsity.com

Vestibular Estadual 2008 [Exame Discursivo] 7

matemática

questão 06

Considere um setor circular AOC, cujo ângulo central µ é medido em radianos. A reta que tangencia o círculo no extremo P do diâmetro CP encontra o prolongamento do diâmetro AB em um ponto Q, como ilustra a figura.

Sabendo que o ângulo µ satisfaz a igualdade tgµ = 2µ, calcule a razão entre a área do setor AOC e a área do triângulo OPQ.

rascunho:

desenvolvimento e resposta:

docsity.com

8

questão 07

Uma partícula parte do ponto A(2; 0), movimentando-se para cima (C) ou para a direita (D), com velocidade de uma unidade de comprimento por segundo no plano cartesiano.

O gráfico abaixo exemplifica uma trajetória dessa partícula, durante 11 segundos, que pode ser descrita pela seqüência de movimentos CDCDCCDDDCC.

Admita que a partícula faça outra trajetória composta somente pela seqüência de movimentos CDD, que se repete durante 5 minutos, partindo de A.

Determine a equação da reta que passa pela origem o (0,0) e pelo último ponto dessa nova trajetória.

rascunho:

desenvolvimento e resposta:

docsity.com

Vestibular Estadual 2008 [Exame Discursivo] 9

matemática

questão 08

Um cilindro circular reto é inscrito em um cone, de modo que os eixos desses dois sólidos sejam colineares, conforme representado na ilustração abaixo.

A altura do cone e o diâmetro da sua base medem, cada um, 12 cm.

Admita que as medidas, em centímetros, da altura e do raio do cilindro variem no intervalo ]0;12[ de modo que ele permaneça inscrito nesse cone.

Calcule a medida que a altura do cilindro deve ter para que sua área lateral seja máxima.

rascunho:

desenvolvimento e resposta:

docsity.com

10

questão 09

Para fazer uma caixa, foi utilizado um quadrado de papelão de espessura desprezível e 8 dm de lado, do qual foram recortados e retirados seis quadrados menores de lado x.

Observe a ilustração.

Em seguida, o papelão foi dobrado nas linhas pontilhadas, assumindo a forma de um paralelepípedo retângulo, de altura x, como mostram os esquemas.

Quando x = 2 dm, o volume da caixa é igual a 8 dm3.

Determine outro valor de x para que a caixa tenha volume igual a 8 dm3.

rascunho:

desenvolvimento e resposta:

docsity.com

Vestibular Estadual 2008 [Exame Discursivo] 11

matemática

questão 10

Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

Sabe-se que T assume seu valor máximo, 50, no ponto (2, 0).

Calcule a área da região que corresponde ao conjunto dos pontos do plano cartesiano para os quais T ≥ 20.

rascunho:

desenvolvimento e resposta:

= + - +

T x y x2 2

200

4 8

docsity.com

docsity.com

comentários (0)
Até o momento nenhum comentário
Seja o primeiro a comentar!
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome