Vestibular de Matemática -  Universidade Federal do Ceará - 2008 - UFC, Notas de estudo de Matemática. Centro Universitário de Caratinga (UNEC)
Brasilia80
Brasilia8013 de Março de 2013

Vestibular de Matemática - Universidade Federal do Ceará - 2008 - UFC, Notas de estudo de Matemática. Centro Universitário de Caratinga (UNEC)

PDF (579.1 KB)
6 páginas
451Número de visitas
Descrição
Vestibular de Matemática da Universidade Federal do Ceará do ano de 2008.
20pontos
Pontos de download necessários para baixar
este documento
baixar o documento
Pré-visualização3 páginas / 6
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Pré-visualização finalizada
Consulte e baixe o documento completo
Prova de Física

Matemática

01. Dois veículos, A e B, partem de um ponto de uma estrada, em sentidos opostos e com velocidades constantes de 50km/h e 70km/h, respectivamente. Após uma hora, o veículo B retorna e, imediatamente, segue em perseguição ao outro, com velocidade constante igual a 80km/h. Calcule em quantas horas os carros estarão emparelhados, novamente, a contar do instante da partida.

Questão 01 Tópico: Funções e equações. Solução: Consideremos as funções que descrevem as distâncias percorridas pelos veículos A e B em função do tempo (hora) e respeitando o sentido de percurso.

• Veículo A

[ ) Rp →∞,0: , ttp 50)( =

• Veículo B

[ ) Rq →∞,0: , 

  

<−

≤≤− =

tset

tset tq

115080

1070 )( .

Os gráficos das funções interceptam-se quando 1508050 −= tt , ou seja, no instante 5=t (horas). Pontuação: A questão vale dez pontos.

02. Um triângulo com vértices A, B e C tem comprimentos de lados 8=AB , 11=BC e 15=CA (em unidade de comprimento). Para cada vértice, traça-se uma circunferência com centro no vértice de modo que as três circunferências traçadas são tangentes entre si (como na figura). Calcule os raios das circunferências.

Questão 02

Vestibular 2008.2 Matemática Pág. 1 de 6 docsity.com

Tópico: Geometria Plana e Sistema Linear. Solução: Sejam:

a) o comprimento do raio do círculo com centro no vértice A = X. b) o comprimento do raio do círculo com centro no vértice B = Y. c) o comprimento do raio do círculo com centro no vértice C = Z.

Sendo assim, temos o sistema de equações,

15 11 8

=+ =+ =+

zx zy

yx

Daí, seguem os valores, 6=x , 2=y e 9=z Pontuação: A questão vale dez pontos.

03. Um professor pretendia elaborar uma lista de exercícios com dez questões. Para isso, ele escolheu quatro problemas de Combinatória, sete problemas de Geometria e oito de Álgebra. Determine o número de listas distintas que o professor poderia elaborar (não considere a ordem de apresentação das questões), ao decidir que a lista teria duas questão de Análise Combinatória, cinco questões de Geometria e três questões de Álgebra.

Questão 03 Tópico: Análise Combinatória. Solução: Em resumo, temos a tabela abaixo.

Combinatória 4 questões escolher 2 Geometria 7 questões escolher 5 Álgebra 8 questões escolher 3

Pelo Teorema Fundamental da Contagem, obtemos que o número n de listas distintas que o professor pode elaborar é:

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= !3!5!2)678()34567()34(n Pontuação: A questão vale dez pontos.

04. Considere que 36.000 candidatos compareceram à 1ª. Etapa de um vestibular da UFC. Nessa etapa, foram propostas oito questões de múltipla escolha de Matemática. Um levantamento estatístico sobre essa prova foi transcrito no gráfico abaixo, onde cada coluna registra o percentual do número de candidatos que acertaram a questão correspondente.

% de acerto por questão

45% 40%

25%

60%

36% 42%

70%

41%

1a. 2.a 3a. 4a. 5a. 6a. 7a. 8a.

Questão

% d

e ac

ee rto

A) Calcule o número de alunos que acertaram a 3ª questão.

Vestibular 2008.2 Matemática Pág. 2 de 6 docsity.com

B) Mostre que mais de 10.000 candidatos acertaram, pelo menos, duas questões.

Questão 04 Tópico: Percentagem e contagem. A) Solução: Seja in o número de candidatos que acertaram questão i. Sendo assim,

000.9 100 25000.363 =⋅=n .

B) Solução: Os maiores índices de acertos ocorreram na 4ª e 7ª questões, que correspondem aos seguintes número de candidatos:

600.21 100 60000.366 =⋅=n e 200.25100

70000.367 =⋅=n .

Portanto, o número de candidatos que acertaram, pelo menos, essas duas questões foi .800.10000.3676 =−+nn

Pontuação: A questão vale dez pontos, sendo quatro para o item A e seis para o item B.

05. Considere a função ( ) Rf →∞,0: , xxf 3log)( = .

A) Calcule   

  162

6f .

B) Determine os valores de Ra∈ para os quais 1)1( 2 <+−aaf .

Questão 05 Tópico: Logaritmo, exponencial e desigualdade.

A) Solução: Como 34 332 32

162 6 −=

⋅ ⋅= , temos 33log33log

162 6

3 3

3 −=−== 

  −f .

B) Solução: Por definição, temos 1)1(log)1( 23 2 <+−=+− aaaaf . Como a função exponencial

xxg 3)( = é crescente, segue que 312 <+−aa , ou seja, a desigualdade inicial é equivalente à desigualdade ( ) ( ) 01 2 <+− aa . Um estudo de sinal nos dá que a desigualdade 1)1( 2 <+−aaf e verdadeira se, e somente se, 21 <<− a .

Pontuação: A questão vale dez pontos, sendo quatro para o item A e seis para o item B.

06. Dada a circunferência 242: 22 =+− yxxC no plano cartesiano xy . A) Verifique que o ponto ( )4,4P pertence a essa circunferência.

B) Determine a equação da reta tangente à circunferência no ponto ( )4,4P .

Questão 06 Tópico: Logaritmo Geometria Analítica Plana A) Solução: É suficiente verificar que as coordenadas de ( )4,4P satisfazem a equação, ou seja,

2444.24 22 =+− .

B) Solução: Completando o quadrado, obtemos a equação ( ) ( ) .501 222 =−+− yx Portanto, a circunferência C tem centro no ponto )0,1(A e raio 5=r .

Como a reta procurada L é perpendicular ao raio AP e esse raio tem inclinação 3 4

, segue que

Vestibular 2008.2 Matemática Pág. 3 de 6 docsity.com

kxyL +−= 4 3: . Por outro lado, o ponto LP∈ , sendo assim, suas coordenadas satisfazem a

equação da reta,

k+−= 4 4 34 .

Daí, concluímos que 7 4 3: +−= xyL .

Pontuação: A questão vale dez pontos, sendo quatro para o item A e seis para o item B.

07. Uma caixa de cartolina em forma de um tronco de prisma retangular reto foi planificada, obtendo-se o recorte de cartolina indicado na figura abaixo. Para recuperar a caixa basta dobrar a cartolina nas linhas pontilhadas. As dimensões das arestas, em unidades de comprimentos, são como estão indicadas na figura.

A) Calcule o volume da caixa original.

B) Calcule a área da cartolina.

Vestibular 2008.2 Matemática Pág. 4 de 6 docsity.com

Questão 07 Tópico: Geometria Espacial e Geometria Plana. A) Solução: Ao reconstruirmos a caixa obtemos o prisma

Portanto, o volume da caixa é   

  +⋅⋅=

2 10478V . O valor

2 104 +

é a altura média do tronco de

prisma. Observe que a maior aresta da tampa superior mede 10.

B) Solução: A área total é a área dos dois trapézios mais a área do retângulo central.

732 2

41082 ⋅+  

  +⋅⋅=A

Pontuação: A questão vale dez pontos, sendo cinco para o item A e cinco para o item B.

08. Considere a matriz

  

  

= 0

2 1

2 10

A .

A) Calcule a matriz AAA ⋅=2 e AAAA ⋅⋅=3 (produto matricial).

B) Calcule a matriz B onde 92 AAAIB +⋅⋅⋅+++= . Nessa soma, I denota a matriz identidade 22× e as outras parcelas são potências da matriz A.

Questão 08 Tópico: Matrizes e Progressões. A) Solução: Efetuando os produtos matriciais, temos:

  

  

=

4 10

0 4 1

2A e   

  

= 0

8 1

8 10

3A

B) Solução: Se { }8,6,4,2,0∈i , então,

IA ii i

2 1

10 01

2 1 =

  

 = .

Se { }9,7,5,3,1∈i , então,

Vestibular 2008.2 Matemática Pág. 5 de 6 docsity.com

JA ii i

2 1

01 10

2 1 =

  

 = .

Sendo assim, valem as igualdades:

IIIAAAAI 512

1023

2 1 1024

11

256 1

64 1

16 1

4 118642 =

− =

 

  ++++=++++ e

JJJAAAAA 1024 2047

2 1 2048

11

512 1

128 1

32 1

8 1

2 19753 =

− =

 

  ++++=++++ .

Portanto, a matriz procurada é:

    

    

=

512 1023

1024 2047

1024 2047

512 1023

B .

Pontuação: A questão vale dez pontos, sendo quatro para o item A e seis para o item B.

Vestibular 2008.2 Matemática Pág. 6 de 6 docsity.com

comentários (0)
Até o momento nenhum comentário
Seja o primeiro a comentar!
Esta é apenas uma pré-visualização
Consulte e baixe o documento completo
Docsity is not optimized for the browser you're using. In order to have a better experience we suggest you to use Internet Explorer 9+, Chrome, Firefox or Safari! Download Google Chrome