Программа по химии для абитуриентов - конспект - Химия - Часть 4, Конспект из Химия
zaycev_ia
zaycev_ia21 June 2013

Программа по химии для абитуриентов - конспект - Химия - Часть 4, Конспект из Химия

PDF (624.5 KB)
20 страница
228количество посещений
Описание
I.M. Sechenov Moscow Medical Academy. Реферат по химии. Взаимосвязь между различными классами неорганических соединений. Металлы, их размещение в периодической системе. Физические и химические свойства. Основные спосо...
20очки
пункты необходимо загрузить
этот документ
скачать документ
предварительный показ3 страница / 20
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ

6

H3C∙ +Cl:Cl → H3C:Cl + Cl∙ c) Обрыв цепи:

2Cl∙ → Cl2 2H3C∙ → CH3–CH3 H3C∙ + Cl∙ → CH3–Cl

2. Нитрование (р-ция Коновалова): CH3CH2CH3 + HONO2 → CH3CH(NO2)CH3 + H2O (t=140°, p, 10%)

3. Крекинг: нагревание до 400°-600˚ сообщает молекулам достаточно энергии для того, чтобы произошел гомолитический разрыв С–С связи. При крекинге предельных углеводородов образуются более простые предельные и непредельные углеводороды. Наряду с собственно крекингом при термокаталитической обработке предельных углеводородов идут и другие процессы:

Дегидрирование – отнятие водорода с превращением предельных углеводородов в непредельные.

Ароматизация алканов и циклоалканов с превращением в ароматические углеводороды.

Изомеризация – перестройка углеродого скелета (при действии AlCl3). Метан используется в основном в качестве дешевого топлива. При горении он

дает почти бесцветное пламя. Из метана получают ценные химические продукты: метанол, синтез-газ, формальдегид, ацетилен, различные хлорпроизводные. Этан используется при синтезе этилена. Пропан в смеси с бутаном используется в качестве топлива. Средние члены гомологического ряда используют как горючее для двигателей (бензин, керосин), а также в качестве растворителей. Высшие алканы – топливо для дизельных двигателей, смазочные масла и сырье для производства моющих средств.

Этиленовые углеводороды (алкены); σ- и π-связи, sp²-гибридизация. Пространственная (геометрическая) изомерия. Номенклатура

этиленовых углеводородов. Химические свойства (реакции присоединения водорода, галогенов, галогеноводородов, воды; реакции

окисления и полимеризации). Правило Марковникова. Получение и использование этиленовых углеводородов.

Алкенами называются ненасыщенные углеводороды, содержащие в молекулах одну двойную связь. Простейшим представителем алкенов является этилен С2Н4, в связи, с чем соединения этого ряда называются также углеводородами ряда этилена. Часто применяется для них название олефины. Гомологический ряд алкенов имеет общую формулу СnН2n, т. е. как у циклоалканов. Таким образом, алкены и циклоалканы – изомеры, относящиеся к разным классам. Характерной

6

особенностью строения алкенов является наличие в молекуле двойной связи >C=C<. Двойная связь образуется при помощи двух пар обобщенных электронов. Углеродные атомы, связанные двойной связью, находятся в состоянии sp²-гибридизации, каждый из них образует три σ-связи, лежащие в одной плоскости под углом 120º. Негибридизованные р-орбитали расположены перпендикулярно к плоскости σ-связей и параллельно друг другу и вследствие «бокового» перекрывания образуют вторую связь, называемую π-связью. Электронное облако π-связи лежит частично над плоскостью и частично под плоскостью, в которой лежат атомы. Для алкенов характерна структурная изомерия: различия в разветвлении цепи и в положении двойной связи, а также пространственная изомерия (цис- и трансизомеры). Тривиальные названия олефинов характеризуются добавлением окончания илен: этилен, пропилен и т.д., большое количество алкенов образуется при крекинге и пиролизе нефти. Другой важный способ – дегидрирование алканов (Cr2O3, t=450°–460°). Лабораторными способами получения является дегидратация спиртов и дегидрогалогенирование. 1. CH2=CH2 + Cl2 → CH2Cl–CH2Cl 2. CH3–CH=CH2 + HBr → CH3–CHBr–CH3 3. CH2=CH2 + H2O → CH3–CH2OH 4. CH2=CH2 + H2 → CH3–CH3 (Pt) 5. 3СН2=CH2 + 2KMnO4 + 4H2O → 3HOCH2CH2OH + 2MnO2 + 2КОН

Этилен является одним из важнейших полупродуктов для промышленности органического синтеза. Многие вещества, получаемые непосредственно из этилена, имеют практическое применение или используются для дальнейших синтезов. Пропилен используется для производства изопропилового спирта, ацетона, глицерина, полипропилена. Изобутилен используется для синтеза изооктана, полиизобутилена. Бутилены применяются для получения бутадиена – продукта для получения синтетического каучука.

Общие понятия химии высокомолекулярных соединений (мономер, полимер, структурное звено, степень полимеризации). Полиэтилен.

Полихлорвинил. Отношение полимеров к нагреванию, действию растворов кислот и щелочей. Использование полимеров.

Соединения с молекулярными массами от нескольких тысяч до миллионов получили название высокомолекулярных (полимерных). В настоящее время научились синтезировать много различных ВМС, нашедших применение для изготовления различных материалов: пластмасс, волокон, эластомеров. Для этих материалов очень важны физико-механические свойства – их прочность, эластичность, термостойкость и др. В результате изучения ВМС установлено, что их физико-механические свойства зависят, прежде всего, от формы молекулы, химический состав играет подчиненную роль. По форме молекул различают два

6

крайних типа полимеров: линейные (нитевидные) и трехмерные (объемные, глобулярные). Существует и много др. полимеров, занимающих промежуточное положение между этими крайними типами. Характерные особенности линейных полимеров – это способность образовывать прочные волокна и пленки, значительная эластичность, способность растворяться, а при повышении температуры – плавиться. Типичные представители линейных полимеров – каучук и его синтетические аналоги, полиамидные волокна. Трехмерные полимеры не плавятся, нерастворимы, значительно менее эластичны, чем линейные полимеры, часто даже хрупки. Линейные полимеры можно превратить в трехмерные, «сшивая» цепные молекулы в пространственную сетку. Именно такой процесс происходит при вулканизации каучука. Другие типичные представители трехмерных полимеров – фенолоформальдегидные и глифталевые смолы. Конечно, не только форма, но и химическая природа макромолекулы влияет на физико-механические свойства полимера. В зависимости от состава основной цепи различают полимеры карбоцепные (полимерная цепь состоит только из атомов углерода) и гетероцепные (в состав полимерной цепи входят атомы и др. элементов). Важный класс образуют элементоорганические полимеры, в которые помимо обычных элементов-органогенов входят и атомы др. элементов – кремния, фосфора, бора, титана и др. ВМС возникают в результате соединения множества молекул низкомолекулярных веществ – мономеров. Это может осуществляться путем полимеризации или поликонденсации. Соответственно полимеры по способам получения разделяют на полимеризационные и поликонденсационные. Реакция полимеризации заключается в присоединении друг к другу большого числа молекул мономеров. Реакции полимеризации идут за счет присоединения к кратным связям или за счет раскрытия циклов. Цепной реакции дает толчок кокой-то инициатор. Инициатором часто служат вещества, легко распадающиеся на свободные радикалы. Большое значение в технике имеет совместная полимеризация смеси мономеров: такой процесс называется сополимеризацией. Меняя состав смеси мономеров, можно тонко регулировать свойства получаемых материалов.

Полиолефины. Особое значение приобрела полимеризация олефинов, при которой образуются ценные высокомолекулярные материалы.

Полиэтилен – это по существу насыщенный углеводород с молекулярной массой от 20 тысяч до миллиона. Он представляет собой прозрачный материал, обладающий высокой химической стойкостью, температура размягчения 100-130°С, предел прочности при растяжении 120-340 кг/см², имеет низкую тепло- и электропроводность.

CH2=CH2 → ∙∙∙–CH2–CH2–CH2–CH2–CH2–CH2–∙∙∙ Полипропилен получают из пропилена аналогично полиэтилену. Это

прозрачный материал с температурой размягчения 160-170°С, предел прочности при растяжении 260-500 кг/см², обладающий хорошими электроизоляционными свойствами. Особенностью полимеризации является получение нескольких видов

6

строения молекулы: атактический полимер (1), синдиотактический полимер (2), изотактический полимер (3):

1.

2.

3.

Полистирол – бесцветный прозрачный материал, хорошо известный в виде различных изделий из «органического стекла». Температура размягчения атактического полистирола ~85°С, а изотактического 230°С, что позволяет использовать последний при более высоких температурах. Строение изотактического полистирола следующее:

Виниловые полимеры. Кроме углеводородов, способны полимеризоваться и многие другие соединения с двойной связью, носящие название виниловых мономеров. Их общая формула CH2=CH–X, где Х – хлор, CN, COOCH3 и др. Формула получаемых полимеров следующая:

∙∙∙–CH2–CH–CH2–CH–CH2–CH–CH2–CH–∙∙∙ | | | |

X X X X Поливинилхлорид – прочный термопластичный материал, молекулярная масса

300–400 тысяч. При обычной температуре это твердый материал, однако его можно сделать мягким и гибким, смешивая с труднолетучими растворителями, так называемыми пластификаторами.

6

Широко используются полиметилакрилат (1) и полиметилметакрилат (2), получаемые из эфиров ненасыщенных кислот – акриловой и метакриловой. 1. nCH2=CH → ∙∙∙–CH2–CH–CH2–CH–CH2–CH–∙∙∙

| | | | COOCH3 COOCH3 COOCH3 COOCH3 CH3 CH3 CH3 CH3 | | | |

2. nCH2=C → ∙∙∙–CH2–CH–CH2–CH–CH2–CH–∙∙∙ | | | |

COOCH3 COOCH3 COOCH3 COOCH3 Ценные материалы получаются при полимеризации нитрила акриловой

кислоты (акрилонитрила): nCH2=CH → ∙∙∙–CH2–CH–CH2–CH–CH2–CH–∙∙∙ | | | | CN CN CN CN Из полиакрилонитрила изготавливается волокно нитрон – искусственная

шерсть. Поливинилацетат.

–CH2–CH– | O–CO–CH3

В реакции поликонденсации участвуют обычно бифункциональные мономеры, молекулы которых присоединяются друг к другу с отщеплением какой-либо простой молекулы (обычно воды).

Полиамиды: Анид получают из адипиновой кислоты и гексаметилендиамина:

nHOOC–(CH2)4–COOH + nH2N–(CH2)6–NH2 → [–OC–(CH2)4–CO–NH–(CH2)4–NH–]n + nH2O

Капрон получается из капролактама:

→ ∙∙∙–NH–(CH2)5–CO–NH–(CH2)5–CO–NH–(CH2)5–CO–∙∙∙

Энант получают при конденденсации ω-аминоэтановой кислоты. Это волокно имеет строение:

∙∙∙–NH–(CH2)6–CO–NH–(CH2)6–CO–NH–(CH2)6–CO–∙∙∙

6

Полиэфиры. При поликонденсации дикарбоновых кислот с многоатомными спиртами получают высокомолекулярные материалы полиэфирного типа.

Лавсан – полиэфир этиленгликоля и терефталевой кислоты:

HOOC– –COOH + HOCH2–CH2OH → → ∙∙∙–O–CH2–CH2–O–OC– –CO–∙∙∙

Глифталевые смолы получаются при поликонденсации глицерина и фталевой кислоты. Наличие трех гидроксильных групп дает возможность для построения трехмерного полимера:

Вместо глицерина можно применять и пентаэритрит С(СН2ОН)4 (пентафталевые смолы). Наряду с фталевой кислотой вводят также насыщенные и ненасыщенные жирные кислоты. Глифталевые, пентафталевые смолы и продукты их модификации различными добавками объединены под общим названием алкидные смолы. Их растворяют в различных органических растворителях, добавляют красители и получают эмали и лаки, применяемые для окраски вагонов, станков, сельскохозяйственных машин. Алкидные смолы употребляют также при изготовлении типографических красок, линолеума, клеев. В этих областях применения имеет значение способность алкидных смол после высыхания давать прочные пленки.

Фенолоформальдегидные смолы. Искусственный материал, полученный поликонденсацией фенола с формальдегидом, явился первой пластмассой, полученной еще в прошлом столетии, но сохранившей свое значение и в наше время. По фамилии изобретателя англичанина Бакеленда этот материал получил название бакелит.

Поликонденсация фенола с формальдегидом проходит при длительном нагревании компонентов в присутствии кислотных или основных катализаторов. Сначала образуется прозрачная желтоватая жидкость, содержащая метилольные производные фенола. Эти продукты при дальнейшем нагревании конденсируются друг с другом, первоначально образуя малоразветвленный полимер типа:

6

Молекулярная масса нарастает постепенно. Если поликонденсацию остановить при достижении молекулярной массы 700 – 1000, то получается резол – твердая, очень хрупкая прозрачная масса, напоминающая янтарь. Этот материал легко растворяется в органических растворителях.

Такие растворы используют в качестве лаков. При повышении температуры до 60-90°С резол плавится, его применяют для изготовления пресспорошков.

Рис.1 В процессе прессования идет дальнейшая поликонденсация резольной смолы с

образованием трехмерного полимера – резита (см. рис. 1). Резит не плавится и не растворяется.

Диеновые углеводороды, их строение, химические свойства и использование. Природный каучук, его строение и свойства.

Синтетический каучук. Алкадиены – соединения, содержащие в открытой углеродной цепи две

двойные связи. Общая форма алкадиенов СnН2n-2 (как и ацетиленов).

6

Следовательно, алкадиены изомерны алкинам. Изомерия алкадиенов в свою очередь обусловлена строением углеродного скелета и относительным расположением двойных связей. По взаимному расположению двойных связей различают следующие алкадиены: с кумулированными двойными связями (С=С=С), с сопряженными двойными связями (С=С–С=С), с изолированными двойными связями (С=С–С–С–С=С). Наиболее промышленно важными алкадиенами являются бутадиен-1,3 и изопрен. Промышленными способами получения бутадиена-1,3 является дегидрирование бутана, а также по способу Лебедева (из этанола); изопрена – дегидрирование изобутилена. Как и для алкенов, для алкадиенов характерны реакции полимеризации и присоединения. Наиболее практически важными являются реакции полимеризации, т.к. в их основе лежит получение синтетических каучуков. При полимеризации изопрена получают полимер, похожий по строению элементарного звена на природный каучук.

nCH2=CH–CH=CH2 (–CH2–CH=CH–CH2–)n nCH2=CH–CH(CH3)=CH2 (–CH2–C(CH3)=CH–CH2–)n

Чтобы получить каучук с определенными свойствами, часто используют реакцию сополимеризации – совместной полимеризации двух и более полимеров. Каучуки широко применяются в производстве резины. Чтобы превратить каучук в резину, его наполняют сажей, глиной и подвергают вулканизации. Вулканизация – сшивание различных цепей полимера. Чаще всего вулканизируют каучук с целью повышения прочности, эластичности, снижения растворимости.

Ацетилен. Строение тройной связи (sp-гибридизация). Получение ацетилена карбидным способом и из метана. Химические свойства

(реакции присоединения). Использование ацетилена. Алкины – ненасыщенные углеводороды, содержащие в молекуле одну тройную

связь. Общая формула – СnH2n-2. Главным фактором, характеризующим алкины, является наличие в молекуле тройной связи

– С ≡ С – Углеродные атомы, образующие тройную связь, находятся в состоянии

sp-гибридизации. Каждый из них образует две σ-связи, две негибридизованные р-орбитали расположены под прямым углом друг к другу и соответствующим орбиталям другого атома. Они попарно перекрываются, образуя две π-связи, расположенные в двух взаимно перпендикулярных плоскостях. Изомерия алкинов обусловлена разветвлением цепи и положением тройной связи: в этом у них сходство с алкенами. Но для алкинов невозможно существование цис-транс-изомеров, т.к. две σ-связи лежат на одной прямой. Основные способы получения: из дигалогенпроизводных алканов отщеплением галогенводорода при действии спиртового раствора КОН, взаимодействием алкилгалогенидов с ацетиленидами.

6

1. CH≡CH + Cl2 → CHCl=CHCl CHCl=CHCl+ Cl2 → CHCl2–CHCl2

2. CH≡СH + HF → CH2=CHF 3. CH≡CH + H2 → CH2=CH2 + H2 → CH3–CH3 4. CH≡CH + HOH → [CH2=CHOH] → CH3CHO

Реакция протекает легче, чем для алкенов. Катализатором служит разбавленная серная кислота и соли двухвалентной ртути. Эта реакция была открыта М. Г. Кучеровым в 1881 г. и носит его имя.

На основе ацетилена развились многие отрасли промышленности органического синтеза.

Главные представители ароматических углеводородов. Бензол. Электронное строение бензола и его химические свойства (реакции замещения и присоединения). Получение бензола в лаборатории и

промышленности, его использование. Ароматическими углеводородами называются вещества, в молекулах которого

содержится одно или более бензольных колец. Простейшим представителем аренов является бензол. В 1865г. ученым Кекуле была предложена структура молекулы бензола. Главной особенностью ядра является то, что в нем нет ни настоящих простых, ни настоящих двойных связей: все шесть С–С связей одинаковы, а шесть π-электронов образуют устойчивую группировку – электронный секстет. Эта устойчивость создается сопряжением всех π-электронов. Объяснение эквивалентности всех связей было дано лишь с развитием квантовой теории химических связей. Каждый атом углерода находится в состоянии sp²-гибридизации, причем у каждого атома одна из негибридизованных р-орбиталей расположена перпендикулярно плоскости молекулы. При этом все они эквивалентны и образуют общую сопряженную π-систему. Оставшаяся от связи с соседними атомами углерода р-орбиталь каждого атома сориентирована в плоскости кольца и используется для связи с атомом водорода. Бензол – прозрачная бесцветная жидкость с характерным запахом. Не смешивается с водой, но смешивается со многими органическими растворителями, сам бензол является хорошим растворителем. Горит коптящим пламенем. Ядовит.

В промышленности получают риформингом нефти. В чистом виде основная реакция – дегидрогенизация гексана:

С6Н14 → С6Н6 + 4Н2 (t, p). Другим важным методом является тримеризация ацетилена под давлением.

Химические свойства: 1. AlCl3 + Cl2 ↔ Clδ+ [AlCl4]δ–

С6Н6 + Cl2 → C6H5Cl + HCl

6

2. HNO3 + H2SO4 ↔ NO2δ+[HSO4]δ– + H2O С6Н6 + HNO3 → C6H5NO2 + H2O

3. 2H2SO4 ↔ SO3Hδ+[HSO4]δ– + H2O С6Н6 + H2SO4 → C6H5SO3H + H2O

4. AlCl3 + RCl ↔ Rδ+[AlCl4]δ–

С6Н6 + RCl → C6H5R + HCl 5. С6Н6 + 3H2 → C6H12 Pt; t, p. 6. С6Н6 + 3Cl2 → C6H6Cl6 УФ-облучение.

Производные бензола, которые можно рассматривать как продукты замещения атомов водорода бензола алкильными радикалами, называются гомологами. Заместители оказывают влияние на физические свойства бензола: температура кипения изомеров с разветвленными боковыми цепями ниже, чем с нормальными. К химическим свойствам добавляются химические свойства заместителей.

Арены применяются как химическое сырье для получения лекарств, пластмасс, красителей, ядохимикатов и многих других органических веществ, широко используются арены как растворители.

Углеводороды в природе: нефть, природный и попутные газы. Переработка нефти: перегонка и крекинг. Использование

нефтепродуктов в химической промышленности для получения различных веществ.

Основными источниками углеводородов являются природный и попутные нефтяные газы, нефть и уголь.

Природный газ. В состав природного газа входит в основном метан (около 93%). Кроме метана природный газ содержит еще и другие углеводороды, а также азот, СО2, и часто – сероводород. Природный газ при сгорании выделяет много тепла. В этом отношении он значительно превосходит другие виды топлива. Поэтому 90% всего количества природного газа расходуется в качестве топлива на местных электростанциях, промышленных предприятиях и в быту. Остальные 10% используют как ценное сырье для химической промышленности. С этой целью из природного газа выделяют метан, этан и другие алканы. Продукты, которые можно получить из метана имеют важное промышленное значение.

Попутные нефтяные газы. Они растворены под давлением в нефти. При ее извлечении на поверхность давление падает, и растворимость уменьшается, в результате чего газы выделяются и нефти. Попутные газы содержат метан и его гомологи, а также негорючие газы – азот, аргон и СО2. Попутные газы

6

перерабатывают на газоперерабатывающих заводах. Из них получают метан, этан, пропан, бутан и газовый бензин, содержащий углеводороды с числом атомов углерода 5 и больше. Этан и пропан подвергают дегидрированию и получают непредельные углеводороды – этилен и пропилен. Смесь пропана и бутана (сжиженный газ) применяют как бытовое топливо. Газовый бензин добавляют к обычному бензину для ускорения его воспламенения при запуске ДВС.

Нефть – жидкое горючее ископаемое темно-бурого цвета с плотностью 0,70 – 1,04 г/см³. Нефть представляет собой сложную смесь веществ – преимущественно жидких углеводородов. По составу нефти бывают парафиновыми, нафтеновыми и ароматическими. Однако наиболее часто встречается нефть смешанного типа. Кроме углеводородов, в состав нефти входят примеси органических кислородных и сернистых соединений, а также вода и растворенные в ней кальциевые и магниевые соли. Содержатся в нефти и механические примеси – песок и глина. Нефть – ценное сырье для получения высококачественных видов моторного топлива. После очистки от воды и других нежелательных примесей нефть подвергают переработке. Основной способ переработки нефти – перегонка. Она основана на разнице температур кипения углеводородов, входящих в состав нефти. Поскольку нефть содержит сотни различных веществ, многие из которых имеют близкие температуры кипения, выделение индивидуальных углеводородов практически невозможно. Поэтому перегонкой нефть разделяют на фракции, кипящие в довольно широком интервале температур. Перегонкой при обычном давлении нефть разделяют на четыре фракции: бензиновую (30–180°С), керосиновую (120–315°С), дизельную (180–350°С) и мазут (остаток после перегонки). При более тщательной перегонке каждую из этих фракций можно разделить еще на несколько более узких фракций. Так, из бензиновой фракции (смесь углеводородов С5 – С12) можно выделить петролейный эфир (40–70°С), собственно бензин (70–120°С) и лигроин (120–180°С). В состав петролейного эфира входят пентан и гексан. Он является прекрасным растворителем жиров и смол. Бензин содержит неразветвленные предельные углеводороды от пентанов до деканов, циклоалканы (циклопентан и циклогексан) и бензол. Бензин после соответствующей переработки применяется в качестве горючего для авиационных и автомобильных ДВС. Лигроин, содержащий в своем составе углеводороды С8 – С14 и керосин (смесь углеводородов С12 – С18) используют как горючее для бытовых нагревательных и осветительных приборов. Керосин в больших количествах (после тщательной очистки) применяют в качестве горючего для реактивных самолетов и ракет. Дизельная фракция нефтеперегонки – горючее для дизельных двигателей. Мазут представляет собой смесь высококипящих углеводородов. Из мазута путем перегонки под уменьшенным давлением получают смазочные масла. Остаток от перегонки мазута называется гудроном. Из него получают битум. Эти продукты используются в дорожном строительстве. Мазут применяют и как котельное топливо.

6

Каменный уголь. Переработка каменного угля идет по трем основным направлениям: коксование, гидрирование и неполное сгорание. Коксование происходит в коксовых печах при температуре 1000–1200°С. При этой температуре без доступа кислорода каменный уголь подвергается сложнейшим химическим превращениям, в результате которых образуется кокс и летучие продукты. Остывший кокс отправляют на металлургические заводы. При охлаждении летучих продуктов (коксовый газ) конденсируются каменноугольная смола и аммиачная вода. Несконденсированными остаются аммиак, бензол, водород, метан, СО2, азот, этилен и др. Пропуская эти продукты через раствор серной кислоты выделяют сульфат аммония, который используется в качестве минерального удобрения. Бензол поглощают растворителем и отгоняют из раствора. После этого коксовый газ используется как топливо или как химическое сырье. Каменноугольная смола получается в незначительных количествах (3%). Но, учитывая масштабы производства, каменноугольная смола рассматривается как сырье для получения ряда органических веществ. Если от смолы отогнать продукты, кипящие до 350°С, то остается твердая масса – пек. Его применяют для изготовления лаков. Гидрирование угля осуществляется при температуре 400–600°С под давлением водорода до 25 МПа в присутствии катализатора. При этом образуется смесь жидких углеводородов, которая может быть использована как моторное топливо. Достоинством этого метода является возможность гидрирования низкосортного бурого угля. Неполное сгорание угля дает оксид углерода (II). На катализаторе (никель, кобальт) при обычном или повышенном давлении из водорода и СО можно получить бензин, содержащий предельные и непредельные углеводороды:

nCO + (2n+1)H2 → CnH2n+2 + nH2O; nCO + 2nH2 → CnH2n + nH2O.

Если сухую перегонку угля проводить при 500–550°С, то получают деготь, который наряду с битумом используется в строительном деле как связующий материал при изготовлении кровельных, гидроизоляционных покрытий (рубероид, толь и др.).

На сегодняшний день существует серьезная опасность экологической катастрофы. На земле практически нет места, где природа не потерпела бы от деятельности промышленных предприятий и жизнедеятельности человека. При работе с продуктами перегонки нефти нужно следить, чтобы они не попадали в почву и водоемы. Почва, пропитанная нефтепродуктами, теряет плодородие на многие десятки лет, и его очень трудно восстановить. Только за 1988 г. при повреждении нефтепроводов в одно из крупнейших озер попало около 110000 т нефти. Известны трагические случаи слива мазута и нефти в реки, в которых происходит нерест ценных пород рыб. Серьезную опасность загрязнения воздуха представляют ТЭС, работающие на угле, - они являются основным источником загрязнения. Отрицательно воздействуют на водоемы ГЭС, работающие в равнинах рек. Хорошо известно, что автомобильный транспорт сильно загрязняет атмосферу

6

продуктами неполного сгорания бензина. Перед учеными стоит задача к минимуму сократить степень загрязнения окружающей среды!

Предельные одноатомные спирты. Строение и номенклатура. Химические свойства одноатомных спиртов (реакции замещения,

дегидратации и окисления). Промышленные и лабораторные способы синтеза этанола, его использование. Многоатомные спирты:

этиленгликоль и глицерин, их использование. Продукты замещения водорода в углеводородах гидроксильной группой

называют спиртами. Общая формула спиртов R–OH. Гидроксильные производные ароматических углеводородов называют ароматическими спиртами в том случае, если гидроксильная группа находится в боковой цепи, и фенолами, если гидроксогруппа связана с углеродом ядра. По характеру углеводородного радикала алифатические спирты делятся на насыщенные и ненасыщенные. В зависимости от числа гидроксогрупп в молекуле различают одноатомные, двухатомные и многоатомные спирты. Углеродный атом способен прочно удерживать только одну гидроксильную группу; не может гидроксил стоять и при кратной связи, хотя из этих правил есть исключения.

Изомерия спиртов обусловлена строением радикала (изомерия углеродного скелета) и положением гидроксила (изомерия положения). По положению гидроксила в молекуле, в зависимости от того, с каким атомом углерода связан (с первичным, вторичным или третичным) различают первичные, вторичные и третичные спирты.

Широко используется рациональная номенклатура спиртов. Название производится от соответствующего углеводородного радикала с добавлением слова «спирт». Это удобно в случае несложных радикалов: метиловый спирт. Более сложный по строению спирт можно рассматривать как производное метилового спирта - карбинола (карбинольная номенклатура). По современным международным правилам к названию углеводорода добавляется окончание ол и цифра, обозначающая атом углерода, у которого стоит гидроксил.

Общими свойствами получения спиртов является гидратация олефинов в кислой среде, гидролиз галогенпроизводных, восстановление карбонильных соедининий.

Функциональная группа спиртов – гидроксил – обуславливает главные химические свойства этих соединений. Спирты отличаются большой химической активностью. Вследствие многообразия реакций спиртов и доступности сырья для их получения спирты являются ценным исходным материалом для синтеза многих алифатических соединений. Связи С–О–Н поляризованы, причем отрицательным концом диполя является кислород, как наиболее электроотрицательный элемент. На атомах углерода и водорода имеются частичные положительные заряды. Такой электронный характер гидроксогруппы предопределяет ее склонность к реакциям

6

гетеролитического типа, в ходе которых может разрываться либо связь С–О, либо связь О–Н.

Спирты - практически нейтральные вещества: они не изменяют окраски индикаторов, не вступают в реакции ни с водными растворами щелочей, ни с разбавленными кислотами. Однако в