Эконометрическое моделирование стоимости квартир в Московской области, вариант  -  упражнение  - Эконометрика (3), Упражнения из Эконометрика. Modern Institute of Managament
wklev85
wklev8525 March 2013

Эконометрическое моделирование стоимости квартир в Московской области, вариант - упражнение - Эконометрика (3), Упражнения из Эконометрика. Modern Institute of Managament

PDF (255.6 KB)
22 страница
3файлы скачать
1000+количество посещений
Описание
Задачи, тесты и упражнения по предмету Эконометрика. Тема Эконометрическое моделирование стоимости квартир в Московской области. Задачи и решения. Упражнения с ответами. Лабораторная работа. Разные варианты. Вариант 3.
20очки
пункты необходимо загрузить
этот документ
скачать документ
предварительный показ3 страница / 22
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
Эконометрическое моделирование стоимости квартир в Московской области, вариант 3 - контрольная работа - Эконометрика

Министерство образования и науки РФ

Федеральное агентство по образованию ГОУ ВПО

Всероссийский заочный финансово – экономический

институт

Омский филиал

Контрольная работа

по дисциплине

«Эконометрика»

Тема:

«Эконометрическое моделирование стоимости квартир

в Московской области, вариант 3»

Омск, 2009 г.

2

ЗАДАЧА 1. ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТОИМОСТИ КВАРТИР В МОСКОВСКОЙ ОБЛАСТИ.

Даны следующие исходные данные:

Y-цена квартиры, тыс. долл.

X1 (город области)

X2 (число комнат в квартире)

X4 (жилая площадь квартиры), кв.м.

115 0 4 51,4 85 1 3 46 69 1 2 34 57 1 2 31

184,6 0 3 65 56 1 1 17,9 85 0 3 39

265 0 4 80 60,65 1 2 37,8 130 0 4 57 46 1 1 20

115 0 3 40 70,96 0 2 36,9 39,5 1 1 20 78,9 0 1 16,9 60 1 2 32

100 1 4 58 51 1 2 36

157 0 4 68 123,5 1 4 67,5 55,2 0 1 15,3 95,5 1 3 50 57,6 0 2 31,5 64,5 1 2 34,8 92 1 4 46

100 1 3 52,3 81 0 2 27,8 65 1 1 17,3

110 0 3 44,5 42,1 1 1 19,1 135 0 2 35 39,6 1 1 18 57 1 2 34 80 0 1 17,4 61 1 2 34,8

69,6 1 3 53 250 1 4 84 64,5 1 2 30,5 125 0 2 30

152,3 0 3 55

3

(Х1 – город области; 1 – Подольск, 0 - Люберцы).

Задание:

1. Рассчитайте матрицу парных коэффициентов корреляции; оцените

статистическую значимость коэффициентов корреляции.

2. Постройте поле корреляции результативного признака и наиболее тесно

связанного с ним фактора.

3. Рассчитайте параметры линейной парной регрессии для всех факторов Х.

4. Оцените качество каждой модели через коэффициент детерминации,

среднюю ошибку аппроксимации и F-критерий Фишера. Выберите лучшую

модель.

5. Для лучшей модели осуществите прогнозирование среднего значения

показателя Y при уровне значимости 0.1α = , если прогнозное значение фактора

Y составит 80% от его максимального значения. Представьте графически:

фактические и модельные значения, точки прогноза.

6. Используя пошаговую множественную регрессию (метод исключения или

метод включения), постройте модель формирования цены квартиры за счёт

значимых факторов. Дайте экономическую интерпретацию коэффициентов

модели регрессии.

7. Оцените качество построенной модели. Улучшилось ли качество модели

по сравнению с однофакторной моделью? Дайте оценку влияния значимых

факторов на результат с помощью коэффициентов эластичности, β - и ∆ -

коэффициентов.

Решение:

При решении данной задачи расчеты и построение графиков и диаграмм будем

вести с использованием настройки Excel Анализ данных.

1. Рассчитаем матрицу парных коэффициентов корреляции и оценим

статистическую значимость коэффициентов корреляции.

Чтобы рассчитать матрицу парных коэффициентов корреляции скопируем

таблицу с исходными данными в Excel. Далее воспользуемся инструментом

Корреляция, входящим в настойку Анализ данных.

4

В диалоговом окне Корреляция в поле Входной интервалвводим диапазон

ячеек, содержащих исходные данные. Так как мы выделили и заголовки столбцов, то

устанавливаем флажок Метки в первой строке.

Получили следующие результаты:

Таблица 1.1. Матрица парных коэффициентов корреляции:

Y (цена квартиры), тыс. долл.

X4(жилая площадь

квартиры), кв.м

X2 (число комнат в квартире)

X1 (город области)

Y (цена квартиры), тыс. долл. 1 X4(жилая площадь квартиры), кв.м 0,826 1 X2 (число комнат в квартире) 0,688 0,919 1

X1 (город области) -0,403 -0,107 -0,155 1 Анализ матрицы коэффициентов парной корреляции показывает, что зависимая

переменная Y, т.е. цена квартиры имеет более тесную связь с Х4 (жилая площадь

квартиры). Коэффициент корреляции равен 0,826. Это означает, что на 82,6%

зависимая переменная Y (цена квартиры) зависит от показателя Х4 (жилая площадь

квартиры). Также зависимая переменная Y (цена квартиры) имеет среднюю связь

68,8% с Х2 (число комнат в квартире) и слабую связь с Х1 (город области).

Статистическая значимость коэффициентов корреляции определим с

помощью t-критерия Стьюдента. Табличное значение сравниваем с расчетными

значениями.

Вычислим табличное значение с помощью функции СТЬЮДРАСПОБР.

tтабл.=1,686 при доверительной вероятности равной 0,9 и степенью свободы

(n-2).

Статистическим значимым является фактор Х4.

2. Построим поле корреляции результативного признака (стоимости

квартиры) и наиболее тесно связанного с ним фактора (жилой площади

квартиры).

Для этого воспользуемся инструментом построения точечной диаграммы

программы Excel.

В результате получаем поле корреляции цены квартиры, тыс. долл. и жилой

площади квартиры, кв.м. (рисунок 1.1.).

5

Рисунок 1.1.

Поле корреляции

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

Жилая площадь квартиры кв.м.

С то и м о с т ь к в а р ти р ы

, т ы с .$

Ряд1

3. Рассчитаем параметры линейной парной регрессии для каждого

фактора Х.

Для расчета параметров линейной парной регрессии воспользуемся

инструментом Регрессия, входящим в настойку Анализ данных.

В диалоговом окне Регрессияв поле Входной интервал Y вводим адрес

диапазона ячеек, которые представляет зависимую переменную, т.е. стоимость

квартир. В поле Входной интервал Х вводим адрес диапазона, который содержит

значения независимых переменных (город области, жилая площадь квартиры, число

комнат в квартире). Выполним поочередно вычисления параметры парной регрессии

для каждого фактора Х.

Для Х4 получили следующие данные, представленные в таблице 1.2:

Таблица 1.2

Коэффициенты Y-пересечение -1,30173 X4 - жилая площадь квартиры, кв.м 2,396718

Уравнение регрессии зависимости цены квартиры от жилой площади квартиры

имеет вид: 44 *40,230,1 XY +−=

Для Х2 получили следующие данные, представленные в таблице 1.3:

Таблица 1.3 Коэффициенты Y-пересечение 13,21194 X2-число комнат в квартире 33,51596

6

Уравнение регрессии зависимости цены квартиры от числа комнат в квартире

имеет вид: 22 *52,3321,13 XY +=

Для Х1 получили следующие данные, представленные в таблице 1.4:

Таблица 1.4

Коэффициенты Y-пересечение 117,5035 X1 – город области -41,484

Уравнение регрессии зависимости цены квартиры от города области имеет вид:

11 *48,4150,117 XY −=

4. Оценим качество каждой модели через коэффициент детерминации,

среднюю ошибку аппроксимации и F-критерий Фишера. Установим, какая

модель является лучшей.

Коэффициент детерминации, среднюю ошибку аппроксимации мы получили в

результате расчетов, проведенных в пункте 3. Полученные данные представлены в

следующих таблицах:

Данные по Х4:

Таблица 1.5а

Регрессионная статистика Множественный R 0,82639 R-квадрат 0,682921 Нормированный R-квадрат 0,674577 Стандартная ошибка 29,37418 Наблюдения 40

Таблица 1.5б

Дисперсионный анализ df SS MS F Значимость F

Регрессия 1 70618,39 70618,39 81,84389 5,12E-11 Остаток 38 32788,02 862,8426 Итого 39 103406,4

Данные по Х2:

Таблица 1.6а

Регрессионная статистика Множественный R 0,68821 R-квадрат 0,473634 Нормированный R-квадрат 0,459782 Стандартная ошибка 37,84653 Наблюдения 40

7

Таблица 1.6б

Дисперсионный анализ df SS MS F Значимость F Регрессия 1 48976,74 48976,74 34,19305 9,22E-07 Остаток 38 54429,67 1432,36 Итого 39 103406,4

Данные по Х1:

Таблица 1.7а

Регрессионная статистика Множественный R 0,403334 R-квадрат 0,162678 Нормированный R-квадрат 0,140644 Стандартная ошибка 47,73403 Наблюдения 40

Таблица 1.7б

Дисперсионный анализ df SS MS F Значимость F Регрессия 1 16821,99 16821,99 7,3828 0,009861 Остаток 38 86584,43 2278,538 Итого 39 103406,4

А) Коэффициент детерминации определяет, какая доля вариации признака У

учтена в модели и обусловлена влиянием на него фактора Х. Чем больше значение

коэффициента детерминации, тем теснее связь между признаками в построенной

математической модели.

В программе Excel обозначается R-квадрат. 2

4XR = 0,683

2 Х2R = 0,474

2 1ХR = 0,163

Исходя из данного критерия наиболее адекватной является модель уравнения

регрессии зависимости цены квартиры от жилой площади квартиры (Х4).

Б) Среднюю ошибку аппроксимации рассчитаем по формуле:

n

yy

у A t

− =

2)ˆ(100 , где числитель – сумма квадратов отклонения расчетных

значений от фактических. В таблицах она находится в столбце SS, строке

Остатки.

8

Среднее значение цены квартиры у рассчитаем в Excel с помощью функции

СРЗНАЧ. у = 93,65025 тыс. долл.

При проведении экономических расчетов модель считается достаточно точной,

если средняя ошибка аппроксимации меньше 5%, модель считается приемлемой, если

средняя ошибка аппроксимации меньше 15%.

30,57 40

32788,02

65025,93

100 4 ==A

39,4 40

54429,668

6502593

100 2 =,

=A

7,49 40

86584,425

65025,93

100 1 ==A

По данному критерию, наиболее адекватной является математическая модель

для уравнения регрессии зависимости цены квартиры от жилой площади квартиры

(Х4).

В) Для проверки значимости модели регрессии используется F-тест. Для этого

выполняется сравнение .фактF и критического (табличного) .таблF значений F-

критерия Фишера.

Расчетные значения приведены в таблицах 1.5б, 1.6б, 1.7б (обозначены буквой F).

Табличное значение F-критерий Фишера рассчитаем в Excel с помощью

функции FРАСПОБР. Вероятность возьмем равной 0,05. Получили:

.таблF = 4,10

Расчетные значения F-критерий Фишера для каждого фактора сравним с

табличным значением:

4xF = 81,84 > .таблF = 4,10 модель по данному критерию адекватна.

2xF = 34,19 > .таблF = 4,10 модель по данному критерию адекватна.

1xF = 7,38 > .таблF = 4,10 модель по данному критерию адекватна.

Проанализировав данные по всем трем критериям, можно сделать вывод, что

наиболее лучшей является математическая модель, построена для фактора жилая

площадь квартиры, которая описана линейным уравнением 44 *4,23,1 XY +−= .

5. Для выбранной модели зависимости цены квартиры от жилой

площади квартиры XY *4,23,1 +−= осуществим прогнозирование среднего

значения показателя Y при уровне значимости 0.1α = , если прогнозное

значения фактора Y составит 80% от его максимального значения.

9

Представим графически: фактические и модельные значения, точки

прогноза.

Рассчитаем прогнозное значение Х, по условию оно составит 80% от

максимального значения.

Рассчитаем Хmax в Excel с помощью функции МАКС.

maxХ = 84кв.м

41Х̂ =0,8 *84 = 67,2 кв.м

Для получения прогнозных оценок зависимой переменной подставим

полученное значение независимой переменной в линейное уравнение:

41Y = -1,3+2,4*67,2 = 159,98 тыс.долл.

Определим доверительный интервал прогноза, который будет иметь

следующие границы:

)()( lUlNy p ++

)()( lUlNy p −+

Для вычисления доверительного интервала для прогнозного значения

рассчитываем величину отклонения от линии регрессии. Для модели парной

регрессии величина отклонения рассчитывается:

∑ −

− ++= +n

t

lN y

XX

XX

n tSU

1

2

2 )(

ˆ )(

)ˆ(1 1* α

21 1

2

1

2

ˆ − =

−− = ∑∑

nkn S

n

t

n

t y

εε , т.е. значение стандартной ошибки из таблицы 1.5а.

(Так как число степеней свободы равно единицы, то знаменатель будет равен n-2).

yS ˆ = 29,37

Для расчета коэффициента αt воспользуемся функцией Excel

СТЬЮДРАСПОБР, вероятность возьмем равную 0,1, число степеней свободы 38.

αt = 1,686

Значение 2

1 )( XХ t

n −∑ рассчитаем с помощью Excel, получим 12294.

51,63 12294

)39,62,67(

40

1 1686,1*37,29

2

=−++=U

Определим верхнюю и нижнюю границы интервала.

159,98+51,63= 211,61

159,98-51,63= 108,35

10

Таким образом, прогнозное значение 41У̂ = 159,98 тыс.долл., будет

находиться между нижней границей, равной 108,35 тыс.долл. и верхней границей,

равной 211,61 тыс.долл.

Фактические и модельные значения, точки прогноза представлены

графически на рисунке 1.2.

Рисунок 1.2.

График фактических и модельных значений и точки прогноза

0

50

100

150

200

250

300

0 20 40 60 80 100 Жилая площадь квартиры (кв.м)

С т о и м о с т ь

к в а р т и р ы

Y Предсказанное Y Ряд3

6. Используя пошаговую множественную регрессию (метод исключения),

построим модель формирования цены квартиры за счёт значимых факторов.

Для построения множественной регрессии воспользуемся функцией

Регрессия программы Excel, включив в нее все факторы. В результате получаем

результативные таблицы, из которых нам необходим t-критерий Стьюдента.

Таблица 1.8.а.

Коэффициенты Стандартная ошибка t-статистика P-Значение

Y-пересечение 30,45 10,14617717 3,001135 0,004862638 X4 (жилая площадь квартиры)

3,849 0,499544248 7,704503 3,99877E-09

X2 (число комнат в квартире)

-28,532 8,441863622 -3,379775 0,00175709

X1 (город области) -36,176 7,070149312 -5,116777 1,05101E-05

11

Таблица 1.8.б.

Регрессионная статистика Множественный R 0,913962927 R-квадрат 0,835328231 Нормированный R-квадрат 0,821605584 Стандартная ошибка 21,74863765 Наблюдения 40

Таблица 1.8.в.

Дисперсионный анализ df SS MS F Значимость F Регрессия 3 86378,29447 28792,76482 60,87223598 3,55864E-14 Остаток 36 17028,11663 473,0032397 Итого 39 103406,4111

Получаем модель вида:

124 18,3653,2885,345,30 XXXY −−+= .

Поскольку .таблF < .расчF (4,10 < 60,87), уравнение регрессии следует

признать адекватным.

Выберем наименьшее по модулю значение t-критерия Стьюдента, оно равно

│-3,38│, сравниваем его с табличным значением, которые рассчитываем в Excel,

уровень значимости берем равным 0,10, число степеней свободы n-m-1=40-4=36:

таблt =1,688.

Поскольку │-3,38│> 1,688 модель следует признать адекватной.

Коэффициент парной корреляции независимых переменных X2 (число комнат в

квартире) и X4 (жилая площадь квартиры) 42 xxr = 0,92. Так как это больше 0,8,

следовательно в исходных данных имеется мультиколлинеарность. Чтобы

избавиться от мультиколлинеарности из переменных X2 (число комнат в квартире)

и X4 (жилая площадь квартиры) оставим в модели X4, так как он в большей степени

связан с зависимой переменной Y(цена квартиры).

Вычисляем новую математическую модель.

Таблица 1.9.а.

Коэффициенты Стандартная ошибка t-статистика P-Значение

Y-пересечение 21,44848618 11,0838945 1,935103784 0,060649342 X4 (жилая площадь квартиры)

2,297644203 7,921039863 10,28689171 0,000196621

X1(город области) -32,73940067 0,223356507 -4,133220036 2,11022E-12

12

Таблица 1.9.б.

Регрессионная статистика Множественный R 0,884916669 R-квадрат 0,783077511 Нормированный R-квадрат 0,771351971 Стандартная ошибка 24,62210392 Наблюдения 40

Таблица 1.9.в.

Дисперсионный анализ

df SS MS F Значимость F

Регрессия 2 80975,23504 40487,61752 66,78391916 5,26787E-13 Остаток 37 22431,17605 606,2480015 Итого 39 103406,4111

Получаем модель вида: 14 74,3230,245,21 XXY −+= .

Поскольку .таблF < .расчF (4,10 < 66,78), уравнение регрессии следует

признать адекватным.

Выберем наименьшее по модулю значение t-критерия Стьюдента, оно равно

│-4,13│, сравниваем его с табличным значением, которые рассчитываем в Excel,

уровень значимости берем равным 0,10, число степеней свободы n-m-1=40-3=37:

таблt = 1,687.

Поскольку │-4,13│> 1,687 модель следует признать адекватной.

Мультиколлинеарность отсутствует.

7. Оцените качество построенной модели.

а) Для модели 14 74,3230,245,21 XXY −+= коэффициент детерминации

составил 0,78, для модели 44 *40,230,1 XY +−= он составил 0,683, поскольку чем

больше значение коэффициента детерминации, тем теснее связь между признаками в

построенной математической модели, то первая модель является лучшей по данному

критерию.

б) Рассчитаем среднюю ошибку аппроксимации:

25,28 40

522431,1760

6502593

100 =

, =A

Для предыдущей модели она составила 30,57.

в) Рассчитаем табличное значение F-критерия Фишера при вероятности 0,05:

.таблF =3,25

13

.фактF = 66,78

xF = 66,78 > .таблF =3,25 модель по данному критерию адекватна.

Для оценки значимого фактора полученной математической модели,

рассчитаем коэффициенты эластичности, β и - коэффициенты.

Коэффициент эластичности показывает, насколько процентов изменится

результативный признак при изменении факторного признака на 1%:

=iЭ Y

X a ii * .

Э X4 = 2,29 *(39,62/93,65) = 1%.

Э X1 = (-32,74) * (0,58/93,65) = - 0,2 %.

То есть с ростом общей площади квартиры на 1% стоимость квартиры в среднем

возрастает на 1%.

А при изменении города Люберцы на Подольск при неизменной общей площади

квартиры величина стоимости квартиры уменьшится в среднем на 0,2%.

То есть наибольшее воздействие на цену квартиры оказывает величина жилой

площади (X4), а наименьшее - X1 (город области). β -коэффициент показывает на какую часть величины среднего квадратического

отклонения меняется среднее значение зависимой переменной с изменением

независимой переменной на одно среднеквадратическое отклонение.

y

x ii

ia σ σ

β *=

4Xβ = 2,29* (17,755/51,492) = 0,79.

1Xβ = (-32,74) * (0,5/51,492) = - 0,32.

Данные средних квадратических отклонений взяты из таблиц, полученных с

помощью инструменты Описательная статистика.

Таблица 1.11.

Описательная статистика (Y)

Y-цена квартиры, тыс. руб. Среднее 93,65025 Стандартная ошибка 8,141631 Медиана 79,45 Мода 115 Стандартное отклонение 51,4922 Дисперсия выборки 2651,446 Эксцесс 3,611985

14

Асимметричность 1,805953 Интервал 225,5 Минимум 39,5 Максимум 265 Сумма 3746,01 Счет 40

Таблица 1.12.

Описательная статистика (Х4)

X4(жилая площадь квартиры), кв.м Среднее 39,6175 Стандартная ошибка 2,807241 Медиана 35,5 Мода 46 Стандартное отклонение 17,75455 Дисперсия выборки 315,224 Эксцесс -0,044 Асимметричность 0,671167 Интервал 68,7 Минимум 15,3 Максимум 84 Сумма 1584,7 Счет 40

Таблица1.13.

Описательная статистика (X1)

X1 (город области) Среднее 0,575 Стандартная ошибка 0,079158 Медиана 1 Мода 1 Стандартное отклонение 0,500641 Дисперсия выборки 0,250641 Эксцесс -2,0034 Асимметричность -0,31539 Интервал 1 Минимум 0 Максимум 1 Сумма 23 Счет 40

∆ - коэффициент определяет долю влияния фактора в суммарном влиянии всех

факторов: 2R

r β=∆ j

yx

jj

15

Для расчета коэффициентов парной корреляции вычисляем матрицу парных

коэффициентов корреляции в программе Excel с помощью инструмента

Корреляция настройки Анализа данных.

Таблица 1.14.

Х4 - жилая площадь

квартиры,кв. м

X1 - город области

Y-цена квартиры, тыс. руб.

X4 - жилая площадь квартиры, кв. м 1

X1 - город области -0,10732 1

Y-цена квартиры, тыс. руб. 0,82639

-0,40333 1

=∆ 4X (0,79*0,826) / 0,78 = 0,84.

=∆ 1X (-0,32*(-0,403))/0,78 = 0,16.

Из полученных расчетов можно сделать вывод, что результативный

признак Y (цена квартиры) имеет большую зависимость от фактора X4 (общая

площадь квартиры) (на 84 %), чем от фактора X1 (город области) (16 %).

16

ЗАДАЧА 2. ИССЛЕДОВАТЬ ДИНАМИКУ ЭКОНОМИЧЕСКОГО ПОКАЗАТЕЛЯ НА ОСНОВЕ

АНАЛИЗА ОДНОМЕРНОГО ВРЕМЕННОГО РЯДА.

В течение девяти последовательных недель фиксировался спрос Y(t) (млн. р.) на

кредитные ресурсы финансовой компании. Временной ряд Y(t) этого показателя

приведен ниже в таблице:

Номер наблюдения (t = 1,2,…,9) 1 2 3 4 5 6 7 8 9

3 7 10 11 15 17 21 25 23 Требуется:

1) Проверить наличие аномальных наблюдений.

2) Построить линейную модель 0 1( )Y t a a t= + )

, параметры которой оценить МНК

( ( )Y t )

- расчетные, смоделированные значения временного ряда).

3) Оценить адекватность построенных моделей, используя свойства

независимости остаточной компоненты, случайности и соответствия нормальному

закону распределения (при использовании R/S-критерия взять табулированные

границы 2,7—3,7).

4) Оценить точность моделей на основе использования средней относительной

ошибки аппроксимации.

5) Осуществить прогноз спроса на следующие две недели (доверительный

интервал прогноза рассчитать при доверительной вероятности р = 70%).

6) Фактические значения показателя, результаты моделирования и

прогнозирования представить графически.

Решение:

1)Проверим наличие аномальных наблюдений.

y

tt t

yy

σ λ 1−

− =

1

)( 1

2

− −

= ∑ = n

yy n

t t

yσ =7,52

Результаты расчетов приведены в таблице 2.1.

Таблица 2.1

t yt y-yt-1 |y-yt-1| yt-y - (yt-y

-)2

1 3 -11,667 136,111 2 7 4 4 -7,667 58,778 0,532 3 10 3 3 -4,667 21,778 0,399 4 11 1 1 -3,667 13,444 0,133 5 15 4 4 0,333 0,111 0,532 6 17 2 2 2,333 5,444 0,266

| | y

tt

σ

yy 1−−

17

7 21 4 4 6,333 40,111 0,532 8 25 4 4 10,333 106,778 0,532 9 23 -2 2 8,333 69,444 0,266 сумма 132 24 452

Сравним расчетное значение tλ с табличным значением ( таблλ =1,5). Все

расчетные значения tλ меньше таблλ , следовательно аномальных значений во

временном ряду нет.

2)Построим линейную модель 0 1( )Y t a a t= + )

Рассчитаем коэффициенты линейной модели с помощью инструмента Регрессия

программы Excel. В качестве входного интервала Y берем значения спроса на

кредитные ресурсы финансовой компании в качестве входного интервала Х – номера

наблюдений.

Результаты приведены в таблице:

Таблица 2.2а

Регрессионная статистика Множественный R 0,983716989 R-квадрат 0,967699115 Нормированный R-квадрат 0,963084703 Стандартная ошибка 1,444200224 Наблюдения 9

Таблица 2.2б

Дисперсионный анализ df SS MS F Значимость F

Регрессия 1 437,4 437,4 209,712329 2E-06 Остаток 7 14,6 2,085714286 Итого 8 452

Таблица 2.2в

Коэффициен

ты Стандартная

ошибка t-статистика P-Значение

Y-пересечение 1,17 1,04918714 1,111971949 0,30287593 t 2,7 0,18644545 14,48144774 1,7853E-06

Таблица 2.2г

ВЫВОД ОСТАТКА Наблюдение Предсказанное Y Остатки

1 3,866667 -0,86667

2 6,566667 0,433333

3 9,266667 0,733333

18

4 11,96667 -0,96667

5 14,66667 0,333333

6 17,36667 -0,36667

7 20,06667 0,933333

8 22,76667 2,233333

9 25,46667 -2,46667

Уравнение линейной модели будет иметь вид: )(ˆ tY = 1,17+2,7t

3)Оценим адекватность построенных моделей, используя свойства

независимости остаточной компоненты, случайности и соответствия

нормальному закону распределения.

Модель является адекватной, если математическое ожидание значений

остаточного ряда близко или равно нулю, и если значения остаточного ряда

случайны, независимы и подчинены нормальному закону распределения.

а) При проверке независимости (отсутствия автокорреляции) определяется

отсутствие в ряду остатков систематической составляющей (с помощью d-критерия

Дарбина-Уотсона).

Таблица 2.3а. Таблица для вычисления d-критерия.

t yt уt

расчетное Отклонение

Е(t) Е(t)-Е(t-1) (Е(t)-Е(t-1))2 Е(t)2 1 3 3,867 -0,867 0,752 2 7 6,567 0,433 1,300 1,69 0,187 3 10 9,267 0,733 0,300 0,09 0,537 4 11 11,967 -0,967 -1,700 2,89 0,935 5 15 14,667 0,333 1,300 1,69 0,111 6 17 17,367 -0,367 -0,700 0,49 0,135 7 21 20,067 0,933 1,300 1,69 0,870 8 25 22,767 2,233 1,300 1,69 4,986 9 23 25,467 -2,467 -4,700 22,09 6,086 сумма 45 132 0,00 32,32 14,600 среднее значение 5 14,667

∑ ∑ = =

− ==−= N

t

N

t ttt eeed

2 1

2 )(

2 )1()( 21,26,14

32,32 :][

Зададим уровень значимости равной 0,05. По таблицам значений критерия

Дарбина-Уотсена для числа n=9 и числа независимых переменных модели k=1

критическое значение d1=0,82 и d2=1,32

Так как d попало в интервал от 2 до 4, то вычисляем d ′ :

d 4- 2,21 = 1,79

19

d попало в интервал от d2<d’<2, по данному критерию модель адекватна.

б) Проверку случайности уровней ряда остатков проведем на основе критерия

поворотных точек.

В случайном ряду чисел должно выполняться строгое неравенство:

2

Количество поворотных точек равно 5 (Рисунок 2.1.). Правая часть неравенства

равна 2. Неравенство выполняется (5>2), следовательно, свойство случайности

выполняется. Модель по этому критерию адекватна.

Таблица 2.3б

Отклонение Е(t) поворотные точки -0,867 0,433 -0,39 0 0,733 0,51 1 -0,967 2,21 1 0,333 0,91 1 -0,367 0,91 1 0,933 -1,69 0 2,233 6,11 1 -2,467

Рисунок 2.1

Переменная X 1 График остатков

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

Переменная X 1

О с та тк и

в) Соответствие ряда остатков нормальному закону распределения определим

при помощи RS-критерия. RS=[Emax –Emin] : SE

Emax – максимальный уровень ряда остатков = 2,233;

Emin – минимальный уровень ряда остатков = - 2,467;

SE – среднее квадратичное отклонение

SE = ∑ − )1(: 2

)( NE t = 8/14,6 = 1,351

( ) =−−− 90

2916 96,12

3

2 n n

20

RS=[2,233–(-2,467)]/ 1,351= 3,48

Расчетное значение попадает в интервал (2,7 - 3,7), следовательно, свойство

нормальности распределения выполняется. Модель по этому критерию адекватна.

4) Оценим точность моделей на основе использования средней

относительной ошибки аппроксимации.

Среднюю относительную ошибку аппроксимации рассчитаем по формуле:

∑= n

t

t отн yn 1

* 1 εε *100%

Построим расчетную таблицу:

Таблица 2.5.

t

yt

E(t) |E(t)| Y

E t

1 3 -0,867 0,867 0,289 2 7 0,433 0,433 0,062 3 10 0,733 0,733 0,073 4 11 -0,967 0,967 0,088 5 15 0,333 0,333 0,022 6 17 -0,367 0,367 0,022 7 21 0,933 0,933 0,044 8 25 2,233 2,233 0,089 9 23 -2,467 2,467 0,107 Итого 0,797

797,0* 9

1=отнε *100%= 8,85 %

Данную модель можно считать приемлемой, так как рассчитанное значение

средней относительной ошибки аппроксимации меньше 15%.

5) Осуществим прогноз спроса на следующие две недели.

Рассчитаем прогнозные значения для 10 и 11 недели, подставив

соответствующие значения в ранее полученное уравнение регрессии )(ˆ tY = 1,17+2,7t:

(10)= 1,17+2,7*10= 28,17

(11)= 1,17+2,7*11= 30,87

Доверительные интервалы для прогнозных значений рассчитаем по формуле:

прl Sty *ˆ ± , где

∑ =

−+++= n

t

пр

tt

tln

n SS

1

2

2

)(

)(1 1*ε

Среднее значения параметра t равно:

21

t = n

t i = 9

45 =5

Рассчитаем знаменатель дроби, находящейся под корнем. Для этого

построим расчетную таблицу:

Таблица 2.6.

t 2)( tt 1 16,00 2 9,00 3 4,00 4 1,00 5 0,00 6 1,00 7 4,00 8 9,00 9 16,00 Итого 60,00

∑ − n

tt 1

2)( =60

Из таблицы 2.2а берем значение стандартной ошибки оценки: =εS 1,444

Рассчитаем Sпр для каждой недели:

10S =1,444* 60

)510(

9

1 1

2−++ = 1,785

11S =1,444* 60

)511(

9

1 1

2−++ = 1,889

Рассчитаем t-критерий Стьюдента с помощью формулы СТЬЮДРАСПОБР,

при доверительной вероятности равной 70%: t=1,119

Рассчитаем доверительные интервалы:

Для 10-ой недели:

прl Sty *ˆ ±

28,17+1,119*1,785= 30,167

28,17-1,119*1,785= 26,173

Для 11-ой недели

прl Sty *ˆ ±

30,87+1,119*1,889=32,983

30,87-1,119*1,889= 28,756

22

6) Представим графически фактические значения показателя, результаты

моделирования и прогнозирования.

Рисунок 2.2.

Фактические, модельные значения, точки прогноза

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 t, неделя

С п р о с н а к р е д и т н ы е р е с у р с ы

Y

Предсказанное Y

Ряд3

Ряд4

Ряд5

комментарии (0)
не были сделаны комментарии
Напиши ваш первый комментарий
это только предварительный показ
консультироваться и скачать документ
Docsity не оптимизирован для браузера, который вы используете. Войдите с помощью Google Chrome, Firefox, Internet Explorer 9+ или Safari! Скачать Google Chrome