Производная обратной функции - конспект - Математика, Конспект из Математика
petr_j
petr_j13 June 2013

Производная обратной функции - конспект - Математика, Конспект из Математика

PDF (84.0 KB)
1 страница
408количество посещений
Описание
Kazan State Finance and Economics Institute. Лекция конспект по математике. Производная обратной функции: Пусть функция у=f(х) строго возрастает, непрерывна на интервале (а,b) и имеет конечную не равную нулю производну...
20очки
пункты необходимо загрузить
этот документ
скачать документ
предварительный показ1 страница / 1
??????????? ???????? ???????:

Производная обратной функции: Пусть функция у=f(х) строго возрастает, непрерывна на интервале (а,b) и имеет конечную не равную нулю производную f'(х) в некоторой точке х(a,b). Тогда об- ратная для f функция х=f–1(у)=g(y) также имеет производную в соответствующей точке, определяемую ра венством g'(y)=1/f'(x) [1] или x'y=1/y'x [1'] Доказательство: Как нам известно, обратная функция x=g(y) строго возрастает и непрерывна на интервале (A,В), где A=inf f(x), В=sup f(x)

x(a,b) x(a,b) (По теореме о обратной непрерывной функции: Пусть функция f непрерывна и строго возрастает на (a,b) (или на [a,b), или (a,b]) и =inf f(x), =sup f(x)

x(a,b) x(a,b) Тогда образ интервала (a,b) (соответственно [a,b), (a,b]) есть интервал (,) (соответственно [,), (,]) и обратная к f функция x=g(y) однозначна, строго возрастает и непрерывна на (,) [,), (,])). Дадим рассматриваемому у приращение y0. Ему соответствует приращение x обратной функции, также не равное нулю в силу строгой монотонности f. Поэтому x/y=1/(y/x). Если теперь y0, то в силу непрерывности g(y) при ращение x также0; но при х0 y/xf'(x)0, =>, существует предел limy0x/y=1/(limy0y/x)=1/f'(x). Этим формула [1] доказана. Примечание: Если f'(x)0 непрерывна на (a,b), то g'(y) непрерывна на (A,B). Это следует из [1], где можно положить x=g(y): g'(y)=1/f'[g(y)] (y(A,B)). Ведь сложная функция f'[g(y)], состоящая из непрерывных функций f' и g, непрерывна.

комментарии (0)
не были сделаны комментарии
Напиши ваш первый комментарий
это только предварительный показ
консультироваться и скачать документ
Docsity не оптимизирован для браузера, который вы используете. Войдите с помощью Google Chrome, Firefox, Internet Explorer 9+ или Safari! Скачать Google Chrome