Строение и свойства вещества - конспект - Химия, Конспект из Химия
zaycev_ia
zaycev_ia20 June 2013

Строение и свойства вещества - конспект - Химия, Конспект из Химия

PDF (226.2 KB)
11 страница
253количество посещений
Описание
I.M. Sechenov Moscow Medical Academy. Реферат по химии. Твёрдые вещества характеризуются следующими показателями: расстояния между частицами (атомами, молекулами) соизмеримы с их размерами, потенциальная энергия частиц ...
20очки
пункты необходимо загрузить
этот документ
скачать документ
предварительный показ3 страница / 11
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
??????? ?1 ?? ?????

Министерство путей сообщения Российской Федерации

Дальневосточный Государственный Университет путей сообщения

КАФЕДРА «Химия»

Курсовой проект на тему:

«Строение и свойства вещества»

К.П. 1001. 1. 615

Выполнил: Глухих П.А. Проверил: Рапопорт Т.В.

г. Хабаровск

2

1999 Цель за ня тия: изу чить свой ства ве ществ в твёр дом со стоя нии,

рассмотреть типы кристаллических решёток, сущность явления проводимости.

1..1 Характеристика вещёства в твёрдом состоянии.

Твёрдые вещества характеризуются следующими показателями: расстояния между частицами (атомами, молекулами) соизмеримы с их размерами, потенциальная энергия частиц значительно превосходит кинетическую, частицы находятся в тепловом колебательном движении.

Твёрдые вещества делятся на аморфные и кристаллические.

Таблица 1.1 Общая характеристика аморфных и кристаллических веществ Аморфное состояние

(стеклообразное) Кристаллическое состояние

Ближний порядок расположения частиц

Изотропность физических свойств Отсутствие конкретной точки плавления Термодинамическая нестабиль ность (большой запас внутренней энергии) Текучесть Примеры: органические полимеры – стекло, вар, янтарь и т.д.

Дальний порядок расположения частиц Анизотропность физических свойств Конкретная температура плавления и кристаллизации Термодинамическая устойчивость (малый запас внутренней энергии) Обладают элементами симметрии Примеры: углерод (алмаз, графит), твёрдые соли, металлы, сплавы.

Геометрическая форма кристалла – это следствие его внутреннего строения, которое характеризуется определённым расположением частиц в пространстве, обуславливающим структуру и свойства данного кристалла (пространственная кристаллическая решётка).

Основные параметры кристаллических решёток описаны в таблице 1.2 Таблица 1.2

Параметры кристаллической решётки (к.р.) Параметры Определения

1. Энергия к р и с т а л л и ч е с к о й решётки, кДж/моль

2. Константа к.р. (d,[Ao])

Энергия, которая выделяется при образовании 1моль кристалла из микрочастиц (атомов, молекул, ионов), находящихся в газообразном состоянии и удалённых друг от друга на расстояние, исключающее их взаимодействие Наименьшее расстояние между центрами 2-х частиц в кристалле, соединённых химической связью Число частиц, окружающих в пространстве центральную

2

3 . К о о р д и н а ц и о н н о е число

частицу, связанных с ней химической связью

В зависимости от вида частиц, находящихся в узлах кристаллической решётки и типа связи между ними, кристаллы бывают различных типов (см. табл. 1.3).

Таблица 1.3 Типы кристаллов и их свойства

Тип кристалл

а (по типу хим.

связи)

Вид частиц в

узлах к.р.

Тип связи между

частицам и

Основные свойства

кристаллов

Примеры веществ

Молекуляр ные

Неполярн ые или полярные молекулы

Межмолек улярные силы; водородны е связи

Низкая теплопроводность и электропроводимость, низкая химическая прочность и темп. плавл.; высокая летучесть

Твёрдые галогены, СН4, Н2, СО2(кр.), Н2О (кр), N2(кр.)

Ковалентн ые

(атомные)

Атомы одного или разных элементов

Ковалентн ые связи

Высокая температура плавл., твёрдость и механ. Прочность; широкий диапазон

электропроводности: от изоляторов (алмаз) и полупроводников

(Ge, Si) до электронных

проводников (Sn)

Кристаллы простых и сложных веществ

элементов 3-й и 4-й групп главных подгр. Салм, Si, Ge, Snc, SiC,

AlN, BN и др.

Ионные Простые и сложн.

ионы

Ионная св. – электроста тическое взаимодейс твие

Промежуточное положение между молекулярными и ковалентными кристаллами; как правило, хор. растворимы в полярн. расторит.; диэлектрики

NaCl, CaF2, LiNO3, CaO и др.

Металличе ские

Атомы и ионы металлов

Металличе ская связь

Ковки, пластичны; высокие тепло- и электропроводимость непрозрачность, металич. блеск

Чистые металлы и сплавы

2

1.2. Кристаллические проводники, полупроводники, изоляторы. Зонная теория кристаллов.

Все известные кристаллические вещества по величине электропроводимости подразделяются на три класса: проводники, диэлектрики (изоляторы), полупроводники (таблица 1.4).

Таблица 1.4. Деление кристаллических веществ по величине

электропроводимости Класс

кристалл ич.

Вещества

Электро проводн

ость Общая характеристика Примеры

Проводн ики 1-го

рода

Диэлектр ики

Полупров одники

Вещества с металлической кристаллической решёткой, характеризующейся наличием “переносчиков тока” – свободно-перемещающихся электронов

Вещества с атомной, молекулярной и реже ионной решёткой, обладающие большой энергией связи между частицами

Вещества с атомной или реже ионной решёткой, обладающие более слабой энергией связи между частицами, чем изоляторы; с ростом температуры электропроводимость растет

Fe, Al, Ag, Cu и др.

Салмаз, слюда, органич. Полимеры, оксиды и др. Si, Ge, B, серое олово и др.

Различие в величине электропроводимости металлов, полупроводников и диэлектриков объясняет зонная теория строения твёрдого тела, основные положения которой сводятся к следующему. При образовании кристалла из одиночных атомов происходит перекрытие атомных орбиталей (АО) близких энергий и образование молекулярных орбиталей (МО), число которых равно общему числу перекрывающихся АО.

С ростом числа взаимодействующих атомов в кристалле растет число разрешённых молекулярных энергетических уровней, а энергетический порог между ними уменьшается. Образуется непрерывная энергетическая зона, в которой переход электронов с более низкого энергетического уровня на более высокий не требует больших затрат энергии.

2

Заполнение электронами МО, составляющих непрерывную энергетическую зону, происходит в порядке возрастания энергии, согласно принципу Паули. В кристалле натрия при образовании N MO, только N/2 MO будут заняты электронами, т.к. у атома Na на каждой валентной 3S АО находится по 1 электрону, а на каждой МО будет располагаться по 2е с противоположными спинами.

Совокупность энергетических уровней, занятых валентными электронами, составляет валентную зону.

Энергетические уровни, незаполненные электронами, составляют зону проводимости.

В кристаллах проводников валентная зона находится в непосредственной близости от зоны проводимости и иногда перекрывается с ней. Е – энергетический барьер близок к нулю. (см. рис.1)

Рис1. Расположение энергетических зон в кристаллах: - зона проводимости; - валентная зона; Е=запрещенная зона

Электроны валентной зоны при их незначительном возбуждении могут легко перейти на свободные энергетические уровни зоны проводимости, что обеспечивает высокую проводимость металлов.

У изоляторов зона проводимости отделена от валентной зоны большим энергетическим барьером (>4эВ). Валентные электроны не могут попасть в зону проводимости даже при передаче им значительного кол-ва энергии, т.к. электроны не могут свободно перемещаться по всему объёму кристалла, проводимость в кристалле отсутствует.

Ширина запрещённой зоны проводников невелика – от 0.1 до 4эВ. При низких температурах они проявляют свойства изоляторов. С повышением температуры энергия валентных электронов возрастает и становится достаточной для преодоления запрещённой зоны. Происходит перенос электрических зарядов, полупроводник становится проводником.

1.3. Собственная и примесная проводимость полупроводников. Дефекты реальных кристаллов.

К типичным собственным полупроводникам относятся В, Si, Ge, Te, Sn(серое) и др. на каждом энергетическом уровне валентной зоны у них находится по 2 электрона (см. рис.2)

2

Рис2. Собственная проводимость После получения кванта энергии связь между этой парой электронов

нарушается и один электрон покидает валентную зону, переходя зону проводимости. В валентной зоне на его месте остаётся вакансия (+)-дырка. При наложении внешнего электрического поля электроны, перешедшие в зону проводимости, перемещаются к А(+), в валентной зоне электрон, находящийся рядом с дыркой (+), занимает её место, появляется новая дырка и т.д. Таким образом, дрейф электрона к А(+) эквивалентен дрейфу дырки к К(-).

Электропроводность, обусловленная одновременным участием в проводимости е и р, называется собственной или электронно-дырочной проводимостью (n – p) типа. Для каждого полупроводника собственная проводимость наступит при разных величинах температур, которые тем выше, чем больше величина запрещённой зоны полупроводника. В настоящее время известно 13 кристаллических модификаций простых веществ обладающих полупроводниковыми свойствами. Они находятся в главных подгруппах 3 – 7 групп Периодической системы элементов Д.И. Менделеева.

3-я группа – В; 6-я группа – S, Se, Te; 4-я группа – S, Si, Ge, Sn; 7-я группа – I. 5-я группа – P, As, Sb, Bi; В кристаллах простых веществ этих элементов ковалентный или

близкий к нему характер химической связи. Ширина запрещённой зоны зависит от прочности ковалентной связи и структурных особенностей кристаллических решёток полупроводника.

К полупроводникам с узкой запрещённой зоной относятся Sn(серое), Р – чёрный, Те. Заметный перенос электронов в зону проводимости наблюдается уже за счёт лучистой энергии.

К полупроводникам с широкой запрещённой зоной относятся Bi, Si – для осуществления проводимости требуется мощный тепловой импульс; для Салм. - -облучение.

2

Получить идеальный кристалл как естественным, так и искусственным путём практически невозможно. Кристаллы, как правило, имеют дефекты в виде структурных нарушений или примесей атомов других элементов. Дефекты кристаллов приводят к усилению дырочной, электронной проводимости или появлению дополнительной ионной проводимости.

Усиление примесной проводимости n-типа происходит, если в кристалле Ge один из атомов замещен атомом Р, на внешнем энергетическом уровне которого находится 5 валентных электронов, 4 из которых образуют ковалентные связи с соседними атомами Ge, а один электрон находится на свободной орбитали у атома фосфора. При передаче кристаллу Ge небольшой энергии (4,4 кДж/моль) этот электрон легко отщепляется от примесного атома Р и проникает из валентной зоны через запрещённую зону в зону проводимости, т.е. служит переносчиком тока. В целом же кристалл Ge остаётся электронейтральным (рис.3). Примеси в кристаллах, атомы которых способны отдавать электроны, усиливая электронную проводимость, называются донорами. По отношению к Ge, Si – это р-элементы 5-й группы, а также Аu и ряд других элементов.

а) б) =Ge====Ge====Ge= =Ge====Ge====Ge=

=Ge====P=====Ge= =Ge====Al====Ge=

=Ge====Ge====Ge= =Ge====Ge====Ge=

Рис.3 Примесная проводимость: а) n-типа; б) р-типа

Усиление примесной проводимости р-типа происходит, если в кристалле Ge или Si один из атомов замещён атомом Al, на внешнем энергетическом уровне которого находится только 3 электрона, то при образовании 4-х ковалентных связей с атомами Ge образуется дефицит одного электрона в каждом узле кристаллической решётки, содержащей атом Аl (рис.3).

При передаче кристаллу небольшой энергии (до 5,5 кДж/моль), атом Al захватывает электрон с соседней ковалентной связи, превращаясь в (-) заряженный ион. На месте захваченного электрона образуется (+) дырка.

Если поместить кристалл в электрическое поле, (+) дырка становится носителем заряда, а электрическая нейтральность атома сохраняется.

Примеси в кристаллах полупроводников, атомы которых способны усиливать в них дырочную проводимость, называются акцепторами.

2

Для кристаллов Ge и Si – это атомы р-элементов 3-й группы, а также Zn, Fe и Mn. Таким образом, варьируя природой и концентрациями примесей в полупроводниках, можно получить заданную электрическую проводимость и тип проводимости. Широкое применение полупроводников привело к созданию сложных полупроводниковых систем на основе химических соединений, чаще всего, имеющих алмазоподобную кристаллическую решётку: AlP, InSb, Cu2O, Al2O3, PbS, Bi2S3, CdSe и др.

Дефекты в реальных кристаллах могут возникать не только в результате примесей атомов других элементов, но и теплового движения частиц, формирующих кристалл. При этом атомы, молекулы или ионы покидают свои места в узлах кристаллической решётки и переходят или в междоузлия или на поверхность кристалла, оставляя в решётке незаполненный узел – вакансию (см. рис 4).

а) о о о О б) о о о о

о о о о о о о О о о о о о о о

о о о о о о о о Рис.4 усиление проводимости при наличии дефектов кристаллов:

а) выход частиц из узла решётки на поверхность кристалла; б) выход частиц из узла решётки в междоузлие.

Точечные дефекты в ионных кристаллах существенно влияют на их проводимость. Под действием электрического поля ближайший к вакансии ион переходит на её место, в точке его прежнего местоположения создаётся новая вакансия, занимаемая в свою очередь соседним ионом. Подобные “перескоки” ионов реализуются с большой частотой, обеспечивая ионную проводимость кристалла.

1.5. Индивидуальное задание

1) Какие связи имеются в кристаллах, образованных элементами с порядковым номером 40, 2, 82? Какие свойства характерны для этих кристаллов?

2) Чем отличается структура кристаллов As и Zn от структуры кристалла Zn3As2? Какие свойства характерны для этих веществ в кристаллическом состоянии?

3) Охарактеризовать полупроводниковые свойства кристалла Вт. Как изменятся эти свойства, если кристалл содержит примеси: Zn; Sb.

2

Вопрос №1

Порядковый 2 40 82 номер элемента Находим в Периодической Не Zr Рb Системе гелий цирконий свинец

Электронные конфигурации

элементов: S n=1  S-элемент, типичный неметалл,

тронной орбитали 2 электрона не обладает химической активностью

 d-элемент, металл

(на внешнем энергетическом уровне 2 электрона) четыре валентных электрона …. S p d

n=4    n=5  – в возбуждённом состоянии

82Pb s p n=6   — р-элемент, металл; на внешнем энергетическом уровне 4 электрона; два – неспаренных; в возбуждённом состоянии – четыре неспаренных электрона.

В кристаллическом состоянии: Не – ковалентных связей не образует, так как энергетический уровень

полностью заполнен спаренными электронами. При образовании химических связей в кристалле Не атомы связаны друг с другом слабыми Ван-дер-Ваальсовыми силами (силы межмолекулярного взаимодействия). Тип кристалла – молекулярный – с низкой механической прочностью, низкой температурой плавления, способностью к возгонке (низкая энергия связи), неэлектропроводен и нетеплопроводен (изолятор).

Zr – в кристалле циркония небольшое число валентных электронов на внешнем уровне обусловливает металлической связи. Металлическая кристаллическая решётка циркония прочна, непрозрачна, образует металлический блеск, способна деформироваться без разрушения, обусловливает тепло- и электропроводные свойства, высокую твёрдость и температуру плавления.

2

Pb – четыре электрона на внешнем уровне при большом радиусе атома обусловливает металлическую связь между атомами в кристалле. Металлическая кристаллическая решётка свинца пластична, непрозрачна, тёмно-серого цвета (металл), со средней (для металлов) температурой плавления, металл тепло- и электропроводен.

Вопрос №2 As Zn Zn3As2

As – мышьяк с конфигурацией внешних электронов ns np: s p

n=4   По “правилу октета” в кристалле у As координационное число 3 –

каждый атом образует 3 ковалентных связи от 3-х соседних атомов. Ковалентная кристаллическая решётка отличается высокой температурой плавления, твёрдостью и механической прочностью; полупроводниковые свойства.

Zn – металл, d-элемент с конфигурацией внешних электронов . Металлическая кристаллическая решётка характеризуется

ковкостью и пластичностью, непрозрачностью, тепло- и электропроводимостью. Кристаллы синеватого цвета с металлическим блеском.

Zn3As2 – кристалл ковалентного типа с ЭО связи Zn-As0,2 При обычных условиях Zn3As2 изолятор, но при повышении температуры появляются полупроводниковые свойства за счёт 2s электронов мышьяка, преодолевших запрещённую зону и перемещённых в зону проводимости. Малая полярность связи придаёт соединению Zn3As2 специфические для ковалентных соединений свойства.

Вопрос №3 В(тв) примеси Zn(тв) и Sb(тв)

Распределение электронов по энергетическим уровням атома бора: 5В ; n=2   s p в возбуждённом состоянии: n=2   - три неспаренных электрона – один неспаренный s-электрон переходит в р-орбиталь, образуется тетрагональная кристаллическая структура с полупроводниковыми свойствами типа . Ширина запрещённой зоны 1,58 эВ (150кДж/моль).

Полупроводники проводят электрический ток тогда, когда часть электронов из валентной зоны приобретают достаточную энергию, чтобы преодолеть запрещённую зону и перейти в зону проводимости. У бора электрический ток переносится электронами в зоне проводимости (феномен

2

– с увеличением температуры электропроводимость возрастает, т.к. растёт концентрация носителей тока). В месте электронов, перешедших в зону проводимости, образовались вакансии (дырки (+)), обеспечивающие дырочную проводимость в валентной зоне.

Примесь Zn: s p ; n=4 

В возбуждённом состоянии у цинка два неспаренных (s- np-) электрона. В узлах кристаллической решётки полупроводника, где находятся атомы цинка, наблюдается дефицит одного электрона при образовании ковалентных связей с бором. При возбуждении кристалла атом цинка захватывает недостающий электрон с соседней ковалентной связи, приобретая избыточный отрицательный заряд (–). В месте захваченного электрона образуется вакансия (+) дырка, обеспечивающая проводимость р-типа. Примесные атомы Zn являются акцепторами электронов.

Примесь Sbт: s p d ; n=5  

На внешнем энергетическом уровне находятся 5 электронов. Три из них образуют ковалентные связи с атомами бора в кристалле; при возбуждении кристалла два Sb-электрона могут перейти в зону проводимости, обеспечив электронную проводимость n-типа. Атомы сурьмы являются донорами. Число электронов, увеличивающих электронную проводимость, возрастают с увеличением температуры:

, где А – предэксионциальный множитель, Е – ширина запрещённой зоны, k – постоянная Больцмана; Т – температура в шкале Кельвина.

Примеси, изменяющие концентрацию носителей тока в полупроводнике, должны быть строго дозированы.

комментарии (0)
не были сделаны комментарии
Напиши ваш первый комментарий
это только предварительный показ
консультироваться и скачать документ
Docsity не оптимизирован для браузера, который вы используете. Войдите с помощью Google Chrome, Firefox, Internet Explorer 9+ или Safari! Скачать Google Chrome