Бесплатформенные инерциальные навигационные системы - конспект -  Астрономия, Конспект из Астрономия
filizia
filizia11 June 2013

Бесплатформенные инерциальные навигационные системы - конспект - Астрономия, Конспект из Астрономия

PDF (213.9 KB)
6 страница
375количество посещений
Описание
Rybinsk State Academy of Aviational Technology. Лекции и рефераты по Астрономии. Развитие бескарданных (бесплатформенных) базовых систем отсчета стала вполне возможной после того прогресса вычислительной техники, котор...
20очки
пункты необходимо загрузить
этот документ
скачать документ
предварительный показ3 страница / 6
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ

Бесплатформенные инерциальные навигационные системы

Развитие бескарданных (бесплатформенных) базовых систем отсчета

стала вполне возможной после того прогресса вычислительной техники,

который привел к появлению надежных бортовых цифровых

вычислительных машин, обладающих нужным объемом памяти и

достаточным быстродействием [15]. Это сделало возможным непрерывное

интегрирование уравнений движения космического аппарата при сколь

угодно сложном характере его движения, опираясь на показания, по сути, тех

же датчиков первичной информации, что и используемые в платформах.

Следовательно, в бесплатформенных системах громоздкие устройства

подвеса со следящими приводами «заменяются» интегрированием уравнений

движения [9, 15].

Типичная схема бесплатформенной системы управления космическим

аппаратом показана на (рис 2.1). С бортовой цифровой вычислительной

машиной 1 соединены три группы датчиков, условно обозначенных через Д1,

Рис 2.1 - Схема бесплатформенной системы управления ориентацией:

1 – бортовая цифровая вычислительная машина; 2 – блок

согласования; 3-исполнительные органы

Д2 и Д3; вырабатываемые в машине сигналы управления

преобразуются должным образом в блоке согласования 2, после чего

docsity.com

поступают на исполнительные органы системы ориентации 3. Воздействуя на

динамику космического аппарата (в зависимости от работы исполнительных

органов, изменяется его угловое движение, и на входе вычислительной

машины появляются измененные сигналы датчиков системы ориентации). На

приведенной схеме все датчики условно разбиты на три группы в

зависимости от основной задачи, выполняемой ими в полете.

Группа датчиков Д1, по сути, обеспечивает существование на борту

математической «платформы». Этими датчиками могут быть любые

устройства, позволяющие регистрировать составляющие p, q и r угловой

скорости космического аппарата, параллельные осям Ox, Oy и Oz жестко

связанного с ним триэдра осей. Имея непрерывно измеряемые значения p(t),

q(t), r(t), вычислительная машина интегрирует кинематические уравнения

углового движения и непрерывно определяет соответствующие три угла

поворота жестко связанного с корпусом космического аппарата триэдра осей

Oxyz относительно некоторого условного, например, начального положения

этого триэдра Ox’y’z’. Поскольку в результате вычислений положение

триэдра Oxyz всегда известно для текущего момента времени с нужной

точностью, постольку известно и расположение относительно корпуса

космического аппарата начального триэдра Ox’y’z’. Таким образом, триэдр

Ox’y’z’, положение которого относительно корпуса непрерывно

вычисляется, может служить базовой системой отсчета углов для

поступательно движущихся осей ориентации; в этом смысле тройка датчиков

Д1 и вычислительная машина заменяют гиростабилизированные платформы

[1, 3, 9, 15].

Если необходимо иметь базовую систему отсчета для орбитальных

осей ориентации при известной орбите космического аппарата, то бортовая

вычислительная машина должна вычислять для каждого момента времени t,

кроме уже сказанного, и положение орбитальных осей ориентации Ox”, Oy”,

Oz” относительно поступательно движущихся осей Ox’, Oy’, Oz’ (эти

вычисления никак не связаны с работой датчиков системы ориентации, в них

docsity.com

используются данные об орбите космического аппарата и о взаимном

положении осей Ox’, Oy’, Oz’ и Ox”, Oy”, Oz” в начальный момент времени

t=0, которое предполагается известным). Поскольку в машине в этом случае

есть все данные о взаимном положении триэдров Ox’y’z’ и Ox”y”z”, с одной

стороны, и триэдров Oxyz и Ox’y’z’, с другой, то тем самым легко

вычисляется и взаимное положение триэдров Oxyz и Ox”y”z”, т.е. углы

ориентации для орбитальной системы осей [3]. В этом смысле тройка

датчиков Д1 и вычислительная машина, в память которой введены параметры

заданной орбиты, заменяют платформу. Совершенно аналогично можно было

бы вычислять в бортовой машине и углы ориентации для скоростной

системы осей, поскольку их вращение в функции времени тоже определяется

параметрами орбиты [1].

Приведенные примеры указывают на большую гибкость, которую

сообщает управлению ориентацией использование бортовой вычислительной

машины, - переход от управления относительно поступательно движущихся

осей ориентации к управлению в орбитальных или скоростных осях может

производиться практически мгновенно путем простого изменения программы

работы машины [12, 15].

В качестве датчиков Д1, о которых было сказано, что они являются

любыми измерителями компонент угловых скоростей, могут быть

использованы высокочастотные датчики угловых скоростей либо одноосные

гиростабилизаторы, т.е. приборы, содержащие лишь один канал

стабилизации углового положения платформы вместо трех. В

рассматриваемом случае платформа не будет устанавливаться в кардановом

подвесе, а будет иметь одну единственную ось вращения – ось Ox. Угол

поворота платформы относительно корпуса космического аппарата вокруг

этой оси обозначим через . В таком случае компонента p’ угловой скорости

вращения платформы по направлению Ox относительно абсолютного

пространства будет равна . Если интегрирующий гироскоп и

следящая система работают идеально, то и ,следовательно, ,

 pp'

0'p p

docsity.com

т.е. по темпу поворота платформы одноосного гиростабилизатора

относительно корпуса космического аппарата можно судить о компоненте

угловой скорости по соответствующей оси [9, 12].

Важно обратить внимание на то обстоятельство, что вращение вокруг

одной оси может быть неограниченным, и поэтому недостатки, свойственные

платформам в кардановых подвесах, отсутствуют [9]. Очевидно, что на борту

космического аппарата надо иметь три таких одноосных гиростабилизатора с

взаимно перпендикулярными осями чувствительности; образно выражаясь,

для получения бескарданной базисной системы в этом случае надо

«распилить» обычную гиростабилизированную платформу на три части и

подсоединить их к вычислительной машине. В каком случае

предпочтительно использовать датчики угловых скоростей и в каком -

одноосные гиростабилизаторы – дело конкретной конструктивной

проработки. Достаточно указать лишь на то, что в первом случае

гироскопический элемент работает в измерительном режиме, во втором же

случае – в режиме нуль-индикатора [21], что всегда проще для

гироскопического элемента, хотя сам одноосный гиростабилизатор и

сложнее датчика угловой скорости.

Бесплатформенные системы, использующие только набор датчиков

Д1, обладают тем же недостатком, что и некорректируемые гироплатформы, -

вследствие уходов гироскопов их точность с течением времени падает.

Чтобы избежать этого, к вычислительной машине подсоединяют датчики,

обозначенные через Д2 на рис.2.1. Это могут быть самые различные датчики

внешней информации - построители местной вертикали, астродатчики и т.п

[1, 12, 15]. По их сигналам вносятся поправки в вычисления, произведенные

в машине на основе информации, получаемой с датчиков группы Д1, и тем

самым достигается независимость точности измерений углов ориентации от

времени непрерывной работы. В некоторых режимах можно работать,

основываясь на информации об углах ориентации, получаемой только с

датчиков Д2. В этих режимах датчики Д1 могут играть роль простых датчиков

docsity.com

угловых скоростей, если последние нужны для формирования сигналов

управления. Возможны и другие комбинации использования подключенных

к вычислительной машине датчиков: если, например, нужно реализовать

режим орбитальной ориентации, то достаточно включить один датчик

группы Д2 – построитель местной вертикали, а по сигналам датчика Д1

произвести курсовую ориентацию космического аппарата, используя их как

инерциальные датчики ориентации. Количество датчиков Д2 и их состав

определяются задачами, стоящими перед космическим аппаратом [9, 12, 15,

21].

Приведенные примеры показывают большую гибкость системы

управления ориентацией, использующей бесплатформенную базисную

систему отсчета, не только в части управления угловым положением

космического аппарата по отношению к разным осям ориентации, но и в том,

что один и тот же режим ориентации может быть получен путем включения

различных наборов датчиков.

Гиростабилизированные платформы применяются для обеспечения

режимов управления движением центра масс и стабилизации углового

положения при работе маршевых двигателей или управления спутником в

атмосфере. Бесплатформенная система с использованием бортовой

вычислительной машины способна обеспечить и такие режимы. С этой

целью к ней подключается группа датчиков, обозначенная через Д3 (см.

рис.2.1), например акселерометров [9, 15]. Хотя такие акселерометры стоят

неподвижно относительно корпуса космического аппарата и поэтому их оси

чувствительности участвуют в поворотах вместе с корпусом, их показания

для некоторого мгновения t всегда могут быть сопоставлены с углами

ориентации относительно абсолютного пространства для того же t,

получаемыми указанными выше способами. Это позволяет производить в

машине соответствующие пересчеты и в конечном итоге путем

интегрирования уравнений движения центра масс иметь все нужные данные

для управления движением центра масс [1]. На рис. 2.1 связь бортовой

docsity.com

вычислительной машины с контуром управления движением центра масс и

управления угловым положением при режимах, связанных с большими

силовыми воздействиями на космический аппарат, не показана.

Бортовая вычислительная машина не только не делает управление

гибким и вполне заменяет гироплатформу, но способна производить

обработку сигналов, поступающих с датчиков внешней информации, с целью

выделения полезного сигнала из шумов [7, 22]. Таким образом, во всех

отношениях, в том числе и в способности работать фильтром для сигналов,

характеризуемых заметными флуктуациями, бесплатформенная система

вполне заменяет корректируемые гиростабилизированные платформы [12].

Применение бесплатформенных систем имеет большие перспективы, поскольку они не обладают недостатками платформ, установленных в кардановых подвесах

docsity.com

комментарии (0)
не были сделаны комментарии
Напиши ваш первый комментарий
это только предварительный показ
консультироваться и скачать документ
Docsity не оптимизирован для браузера, который вы используете. Войдите с помощью Google Chrome, Firefox, Internet Explorer 9+ или Safari! Скачать Google Chrome