Производство Метанола - конспект - Химия, Конспект из Химия
zaycev_ia
zaycev_ia21 June 2013

Производство Метанола - конспект - Химия, Конспект из Химия

PDF (291.5 KB)
25 страница
139количество посещений
Описание
I.M. Sechenov Moscow Medical Academy. Реферат по химии. Метанол (метиловый спирт) является одним из важнейших по значению и масштабам производства органическим продуктом, вы- пускаемым химической промышленностью. Вперв...
20очки
пункты необходимо загрузить
этот документ
скачать документ
предварительный показ3 страница / 25
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
????????

Московская государственная академия тонкой химической технологии им. М. В. Ломоносова

каф. Общая химическая технология.

Курсовая работа на тему:

Производство Метанола

Вариант № 3.

студент: Рудакова Е.В. группа: М-32 преподаватель: Сафонов

Москва 2000г.

2

1. Метанол (метиловый спирт) является одним из важнейших по значению и масштабам производства органическим продуктом, вы- пускаемым химической промышленностью. Впервые метанол был найден в древесном спирте в 1661 г., но лишь в 1834 г. был выде лен из продуктов сухой перегонки древесины Думасом и Пелиготом. В это же время была установлена его химическая формула. I v Способы получения метилового спирта могут быть различны: сухая перегонка древесины, термическое разложение формиатов, гидрирование метилформиата, омыление метилхлорида, каталити- ческое неполное окисление метана, каталитическое гидрирование .окиси и двуокиси углерода. До промышленного освоения каталитического способа метанол получали в основном сухой перегонкой древесины. «Лесохимиче ский метиловый спирт» загрязнен ацетоном и другими трудноотделимыми примесями. В настоящее время этот метод получения метанола практически не имеет промышленного значения. По при чинам технического и главным образом экономического характера промышленное развитие получил метод синтеза метанола из окиси углерода и водорода. В 1913 г. был разработан синтетический способ получения мета нола из окиси углерода и водорода на цинк-хромовом катализа торе при давлении 250—350 кгс/см2. Позднее, в 1923 г. этот про цесс был осуществлен в Германии в промышленном масштабе и в дальнейшем интенсивно развивался и совершенствовался. История развития отечественного промышленного синтеза ме- танола началась в 1934 г. выпуском ~30 т/сут. метанола на двух небольших агрегатах Новомосковского химического комбина та. Сырьем для производства метанола служил водяной газ, полу ченный газификацией кокса. В настоящее время основное количе ство метанола вырабатывается на базе природного газа. Процесс синтеза осуществляется при 250—300 кгс/см2 и 380 °С. В соответствии с Директивами XXIV съезда КПСС об ускорен ном развитии химической промышленности и расширении ассортимента химической продукции производство метанола, являющее ся в настоящее время крупнотоннажным производством, растет бурными темпами. Выпуск метанола за указанный период значительно превышал темпы роста производства многих продуктов химической промыш ленности. Увеличение выпуска метанола проводилось путем интен сификации процесса, расширения существующих и строительства новых производств. В дальнейшем выпуск будет расти в резуль тате строительства крупных однолинейных установок с использо ванием турбоциркуляционных компрессоров вместо поршневых машин и применения новых катализаторов, позволяющих проводить процесс при относительно низком давлении (50—150 кгс/см2).'" \/ Бурный рост производства метанола обусловлен постоянно воз растающим многообразием сфер его применения. .Метанол являет ся сырьем для получения таких продуктов как формальдегид (око ло 50% от всего

3

выпускаемого метанола), синтетический каучук (~11%), метиламин (^'9%), а также диметилтерефталат, метилметакрилат, пентаэритрит, уротропин. Его используют в производ стве фотопленки, аминов, поливинилхлоридных, карбамидных и ионообменных смол, красителей и полупродуктов, в качестве рас- творителя в лакокрасочной промышленности. В большом количе стве метанол потребляют для получения различных химикатов, например хлорофоса, карбофоса, хлористого и бромистого метила и различных ацеталей. Предприятия по выпуску метанола размещены в различных эко- номических районах страны, поэтому и виды используемого сырья различны. Наиболее дешевый метанол получают при использова ния в качестве сырья природного газа. Это и стимулирует перевод предприятий метанола на природный газ. Несмотря на достигнутые успехи, производство метанола про- должает совершенствоваться. Разрабатываются более активные и селективные катализаторы, а также совершенствуются цинк-хромо- вые катализаторы, методы получения и подготовки исходного тех- нологического газа, аппаратурное оформление процесса. Более полно используется тепло, выделяющееся при синтезе метанола. Разрабатываются технологические схемы на основе прогрессив ной техники. Новые мощные агрегаты синтеза метанола производи- тельностью до 30 тыс. т/г в энергетическом отношении будут автономны—для ведения процесса практически не потребуется подводить извне энергию и пар. Одновременно с созданием круп ных одноагрегатных установок с использованием низкотемператур ных катализаторов в мировой практике имеются примеры создания крупных агрегатов, работающих при высоком давлении (250— 350 кгс/см2). Однако в мировой и отечественной практике ввиду технико-экономических преимуществ намечается развитие схем производства метанола при низком давлении 50—150 кгс/см2.

2. Характеристика сырья. СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА МЕТАНОЛА. Технологический исходный газ для синтеза метанола получается в результате конверсии (превращения) углеводородного сырья: природного газа, синтез-газа после производства ацетилена, коксового газа, жидких углеводородов (нефти, мазута, легкого каталитического крекинга) и твердого топлива (угля, сланцев). Исходный газ для синтеза метанола можно получить почти из всех видов сырья, которые используют при получении водорода, например в процессах синтеза аммиака и гидрирования жиров. Поэтому производство метанола может базироваться на тех же сырьевых ресурсах, что и производство аммиака. Использование ого или иного вида сырья для синтеза метанола определяется ядом факторов, но прежде всего его запасами и себестоимостью в выбранной точке строительства. - В соответствии с реакцией образования метанола СО + 2Н2-;—>- CH3OH

4

В исходном газе отношение водорода к окиси углерода должно составлять 2:1, то есть теоретически необходимо, чтобы газ содер-жал 66,66 объемн.% H2 и 33,34 объемн.% СО. В производственных условиях синтез метанола осуществляют по циркуляционной схеме при отношении H2 : СО в цикле выше стехиометрического. Поэтому необходимо иметь избыток водорода в исходном газе, т. е. отношение H2 : CO в нем обычно поддерживают в пределах 1,5—2,25. При содержании значительных количеств двуокиси углерода в исходном газе отношение реагирующих компонентов целесообразно выражать соотношением (H2—CO2) : (CO+CO2). Это соотношение .учитывает расход водорода на реакции восстановления окиси и двуокиси углерода. В исходном газе оно должно быть несколько выше стехиометрического для обеих реакций и равно 2,15—2,25. Величина соотношения (H2—CO2) : (СО+СО2) не определяет концентрации двуокиси углерода в исходном газе. Количество СО2 может быть различным в зависимости от метода получения газа, . также условий синтеза (давление, температура, состав катали затора синтеза метанола) и изменяется от 1,0 до 15,0 объемн.%. Природный и попутный газы представляют наибольший интерес как с экономической точки зрения, так и с точки зрения конструк тивного оформления процесса подготовки исходного газа (конвер сия, очистка и компримирование). Кроме того, они содержат меньше нежелательных примесей, чем газы, полученные газифика цией твердого топлива. Состав природного газа в зависимости от месторождения раз личен. Основным компонентом природного газа является метан; наиболее значительно меняется содержание гомологов метана (этан, пропан, бутан) и инертных газов, что видно из табл. 3. , Большинство крупных производств метанола базируется на ис- пользовании природного газа. Для получения исходного газа,S углеводородное сырье подвергают конверсии различными окислителями —кислородом, водяным паром, двуокисью углерода и их смесями. В зависимости от используемых видов окислителей или их | | смесей различают следующие способы конверсии: паро-углекислотная при атмосферном или повышенном давлениях, паро-углекислотная с применением кислорода, высокотемпературная и паро-углекислородная газификация жидких или твердых топлив. Выбор окислителя или их комбинации определяется назначением полу- чаемого исходного газа (для синтеза метанола на цинк-хромовом или медьсодержащем катализаторах) и технико-экономическими факторами. В качестве сырья для производства метанола используют так же синтез-газ после производства ацетилена методом окислителного пиролиза (на 1 т ацетилена обычно образуется до 10000 м* газа). Этот газ содержит водород и окись углерода в соотношениях, близких к стехиометрическому для реакции синтеза метанола. Остаточный, метан является нежелательной примесью, поэтому до поступления в отделение синтеза газ проходит и каталитическую конверсию.

5

При использовании в качестве сырья для получения исходного газа твердого топлива (кокса и полукокса) последнее подвергают с газификации водяным паром. Кроме кокса, газификации могут Е подвергаться антрацит, сланцы, бурые угли, мазут и нефть. Процессы газификации проводят при атмосферном или при повышенном давлении. По технологическим принципам процессы газифика ции разделяют на циклические и непрерывные. Получение исходного газа таким способом в настоящее время устарело. Отметим лишь, что практически при любом режиме газификации отношение Н2: СО в конвертированном газе меньше теоретического. Поэтому часть газа после очистки от примесей направляют на конверсию окиси углерода водяным паром. Коксовый газ, получаемый в процессе коксования каменных ) углей, содержит значительное количество метана (до 19—25%), У непредельных соединений и большое количество различных прим сей. От некоторых из них (смолы, аммиак, бензол, нафталин и др.) газ очищают на коксохимических заводах.

3. Характеристика целевого продукта. СВОЙСТВА МЕТАНОЛА И ЕГО ВОДНЫХ РАСТВОРОВ. Метиловый спирт, метанол СНзОН является простейшим пред- ставителем предельных одноатомных спиртов. В свободном со- стоянии в природе встречается редко и в очень небольших количе- ствах (например, в эфирных маслах). Его производные, наоборот, содержатся во многих растительных маслах (сложные эфиры), природных красителях, алкалоидах (простые эфиры) и т. д. При обычных условиях это бесцветная, легколетучая, горючая жидкость,. иногда с запахом, напоминающим запах этилового спирта. На организм человека метанол действует опьяняющим образом и яв- ляется сильным ядом, вызывающим потерю зрения и, в зависимо сти от дозы, смерть. Физические характеристики метанола при нормальных условиях. следующие: Молекулярный вес ............ 32,04

Плотность, г/см8 ............. 0,8100

Вязкость, мПа-с ............. 0,817

Температура кипения, °С ......... 64,7

Температура плавления, °С ........ —97,68

Теплота парообразования, ккал/моль .... 8,94

Теплота сгорания, ккал/моль

жидкого ............... 173,65

газообразного............. 177,40

/

Плотность и вязкость метанола уменьшаются при повышении? температуры таким образом: —40 °С —20 °С О °С 20 °С 40 °С 60 °С

Плотность, г/см3 ....... 0,8470 0,8290 0,8100 0,7915 0,7740 0,7555.

Вязкость, мПа.с. ...... 1,750 1,160 0,817 0,597 0,450 0,350

6

Метанол при стандартных условиях имеет незначительное дав ление насыщенных паров. При повышении температуры давление насыщенных паров резко увеличивается".' Так, при увеличении температуры с 10 до 60 °С давление насыщенных паров повы шается от 54,1 до 629,8 мм рт. ст., а при 100 °С оно составляет 2640 мм рт. ст. углеводородами. Он хорошо поглощает пары воды, двуокись угле- рода и некоторые другие вещества. Следует указать на способность метанола хорошо растворять большинство известных газов и паров. Так, растворимость гелия, неона, аргона, кислорода в метаноле при стандартных условиях выше, чем растворимость их в ацетоне, бензоле, этиловом спирте, циклогексане и т. д. Растворимость всех этих газов при разбавле нии метанола водой уменьшается/ Высокой растворимостью газов широко пользуются в промышленной практике, применяя метанол и его растворы в качестве поглотителя для извлечения примесей из технологических газов. Свойства растворов метанола в смеси с другими веществами значительно отличаются от свойств чистого метилового спирта. Интересно рассмотреть изменение свойств системы метанол—во да. Температура кипения водных растворов метанола закономерно увеличивается при повышении концентрации воды и давления (см. Приложение, стр. 114). Температура затвердевания растворов по мере увеличения концентрации метанола понижается: —54 °С при содержании 40% СНзОН и —132°С при 95% СНзОН. Плотность водных растворов метанола увеличивается при по- нижении температуры и почти равномерно уменьшается с увеличе- нием концентрации метанола от плотности воды до плотности ''спирта при измеряемой температуре (см. Приложение, стр. 114). Зависимость вязкости от концентрации метанола имеет при всех исследованных температурах максимум при содержании СНзОН около 40%. В точке максимума вязкость раствора больше вязко сти чистого метанола. ! Метанол смешивается во всех отношениях со значительным числом органических соединений. Со многими из них он образует азеотропные смеси — растворы, перегоняющиеся без изменения состава и температуры кипения, т. е. без разделения; К настояще му времени известно свыше 100 веществ, в числе которых имеются и соединения, обычно присутствующие в метаноле-сырце. К этим веществам, например, относятся ацетон, метилацетат, метилэтилкетон, метилпропионат и некоторые другие. Необходимо отметить, что азеотропные смеси с содержанием таких соединений, как ме-тилэтилкетон, метилпропионат, пропилформиат, изобутилформиат и ряд других имеют температуру кипения, близкую к температуре кипения чистого метанола (62—64,6 °С). 'Метанол сочетает свойства очень слабого основания и еще бо лее слабой кислоты, что обусловлено наличием алкильной и гидро-ксильной групп. При окислении метанола кислородом в присутст вии катализатора образуется формальдегид: СНзОН + 0,5СО2 ——»- НСНО + Н2О

На этой реакции основан широко применяемый в промышлен ности метод получения формальдегида, который используют в про-

7

изводстве пластических масс. При действии щелочей металловводород гидроксильной группы метанола замещается с образова нием алкоголята 2СНзОН + 2Na ——> 2CH3ONa + 2Н2 который стоек только в отсутствие воды, так как вода омыляет его до метанола и щелочи: СНэОNa + Н2О ——»- СНзОН + NaOH С аммиаком метанол образует метиламины: СНзОН + NH3 ——> CH3NH2 + Н2О СНзОН + СНзNН2 ——> (CH3)2NH2 + Н2О CH3OH + (СНз)2NH2 ——> (СН3)3NH2 + Н2О Эти реакции протекают в паровой фазе в присутствии катали- заторов при 370—400 °С и повышенных давлениях.. Дегидратацией на катализаторе при повышенных температурах получают диметиловый эфир: 2СН3ОН ——> (СНз)2О + Н2О При взаимодействии метанола и минеральных кислот образуют ся сложные эфиры. .Этот процесс называется этерификацией, и его широко используют в промышленной практике для получения раз- личных метиловых эфиров — метилхлоридов, метилбромидов, метилнитратов, метилсульфатов и др.: СНзОН + H2SO4 ——>- СНзSОзОН + Н2О Органические кислоты также реагируют с метанолом с образо ванием сложных эфиров: СНзОН + СНзСООН ——> СНзСООСНз + Н2О

4. Физико-химическое обоснование основных процессов производства целевого продукта. . Равновесие реакции образования метанола. Процесс получения метанола основан на взаимодействии водорода и окиси углерода: 2Н2 + СО СНзОН + 21,67 ккал Реакция может протекать как в прямом, так и в обратном направлениях. В соответствии с законом действующих масс скорость любой химической реакции пропорциональна произведению концентраций реагирующих веществ. Тогда скорости прямой и обратной реакций выразятся уравнениями 1 = k1 [Н2]2 [СО] 2 = к2 [СНзОН] где [Hz], [СО] и [СНзОН]—концентрации водорода, окиси углерода и метанола; k1, kz—константы скорости прямой и обратной реакций, значения которых зависят от температуры/ При условии равновесия скорости прямой и обратной реакций становятся равными k1 [Н2]2 [СО] = к2 [СНзОН] откуда:

8

где К—константа равновесия реакции. Значение константы равновесия необходимо для расчета рав- новесного выхода метанола. Равновесный выход—это теоретиче ский максимальный выход метанола, который может быть получен из водорода и окиси углерода, .взятых при данных концентрациях, температуре и давлении процесса. Константу равновесия можно определить как теоретическим, так и экспериментальным путем. Константа равновесия может быть представлена в различных единицах измерения. Давление. В технических расчетах обычно пользуются выражением константы равновесия через парциальное давление компонентов. .

При повышении давления и понижении температуры равновесие сдвигается в сторону увеличения выхода метанола. В промышленных условиях синтез метанола осуществляется из газовой смеси, содержащей кроме водорода и окиси углерода так же двуокись углерода. Поэтому при расчете равновесия синтеза метанола из смеси газов Н2—СО—COz необходимо учитывать сле дующую реакцию: СО2 + Н2( г)—> СО + Н2О — 9,8 ккал ; Равновесный выход метанола, степень превращения окиси и двуокиси углерода в значительной мере меняются в зависимости от давления, температуры, отношения Н2: СО и содержания дву окиси углерода в газе. Влияние давления и температуры на рав новесный выход метанола определено для следующего состава га за: 1,25 объемн.% СОа; 10,6 объемн.% СО; 74,2 объемн.% Нд;-13,95 объемн.% (CH4+Nz). Давление. При повышении давления выход метанола почти прямо пропорционально увеличивается и резко возрастает степень превращения окиси/и двуокиси углерода (при 380°С): Давление, кгс/см2 .......... 50 100 200 300 400

Выход СНэОН, объемн. %...... 0,37 1,56 5,54 9,31 11,68

Следует заметить, что с увеличением давления более резкий рост равновесного выхода метанола наблюдается при повышенных температурах. Так, при изменении давления от 50 до 300 кгс/см5 равновесный выход метанола при 280 °С увеличивается в 2,4 раза а дри 380 °С — в 2,3 раза (отношение Hz : СО =4 : 1). Температура. С повышением температуры равновесный выход метанола понижается. Наиболее резкое понижение наблюдается при температурах выше 340°С. В этих условиях (при 300 кгс/см2) начинает снижаться степень превращения окиси и двуокиси угле рода в метанол, причем более резко окиси углерода: Температура, °С ....... 250 300 340 360 380 400

Выход метанола, объемн. %. . 15,44 14,81 12,88 11,37 9,31 7,40 Степень превращения, %

СО ........... 99,75 97,20 87,52 78,96- 66,19 53,29

СОз ........... 98,00 89,80 77,00 71,50 66,61 64,00

9

При давлении 50 кгс/см2 и повышении температуры от 180 дс 300 °С равновесный выход метанола снижается более чем в 7 pa; (отношение Н2 :СО=3,6, содержание двуокиси углерода 6,0 объемн. %). При этом степень превращения окиси и двуокиси углеро да в метанол уменьшается с 75,3 до 14,6%. При повышении отношения На: СО степени превращения окиси и двуокиси углерода возрастают, причем сте пень превращения СО2 в большей мере, а равновесный выход ме танола снижается. Влияние отношения На : СО на равновесны? выход метанола определено для такого состава газа: 1,25 объемн.% С02; 84,8 объемн. %); 13,95 объемн. % (CI^+Nz). При 300 кгс/см2 и 380 °С равновесный выход метанола и степень пре вращения окислов углерода в зависимости от отношения Нг: СО меняются следующим образом: Отношение На:СО . ......... 2 4 8 10 14

Выход СНдОН, объемн. %,..... 17,25 13,80 8,39 7,05 5,40

Степень превращения, %

СО ............... 44,50 60,39 66,85 67,80 67,97

СОа .............. 19,50 45,71 70,52 76,15 82,39

\При увеличении содержания окиси углерода в газе, т. е. умень шении отношения На: СО, равновесный выход метанола возрастает пропорционально при 50 кгс/см2 и 6 объемн. % СОз). Так, при 8 объемн. % СО, равновесный выход метанола составляет 5,71 объ емн. %, при 16 объемн. % СО—11,41 объемн. %, а при 24 объ емн, % СО—16,82 объемн. % СНзОН. Двуокись углерода. Реакция восстановления двуокиси углерода водородом до окиси углерода в промышленных условиях синтеза метанола протекает практически до равновесного состояния, и пре- небрегать е