История появления реактивной авиации - конспект -  Астрономия, Конспект из Астрономия
filizia
filizia11 June 2013

История появления реактивной авиации - конспект - Астрономия, Конспект из Астрономия

PDF (664.8 KB)
19 страница
676количество посещений
Описание
Rybinsk State Academy of Aviational Technology. Лекции и рефераты по Астрономии. Введение Принцип работы и классификация реактивных двигателей Краткая история развития реактивной авиации Применение реактивной техн...
20очки
пункты необходимо загрузить
этот документ
скачать документ
предварительный показ3 страница / 19
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
это только предварительный показ
консультироваться и скачать документ
предварительный показ закончен
консультироваться и скачать документ
Краткая история развития реактивной авиации

Содержание.

1.Введение

2.Принцип работы и классификация реактивных

двигателей

3.Краткая история развития реактивной авиации

4.Применение реактивной техники в

гражданской авиации

5.Заключение

Часть 1. Введение.

История авиации характеризуется непрекращающейся

борьбой за повышение скорости полета самолетов. Первый

официально зарегистрированный мировой рекорд скорости,

установленный в 1906 году, составлял всего 41,3 километра

в час. К 1910 году скорость лучших самолетов возросла до

110 километров в час. Построенный на Русско-Балтийском

заводе еще в начальный период первой мировой войны

самолет-истребитель РБВЗ-16 обладал максимальной

скоростью полета – 153 километра в час. А к началу второй

мировой войны уже не отдельные машины – тысячи самолетов

летали со скоростями, превышавшими 500 километров в час.

Из механики известно, что мощность, необходимая для

обеспечения движения самолета, равна произведению силы

тяги на его скорость. Таким образом, мощность растет

пропорционально кубу скорости. Следовательно, чтобы

увеличить скорость полета винтомоторного самолета в два

раза необходимо повысить мощность его двигателей в восемь

раз. Это ведет к возрастанию веса силовой установки и к

значительному увеличению расхода горючего. Как показывают

расчеты, для удвоения скорости самолета, ведущего к

увеличению его веса и размеров, нужно повысить мощность

поршневого двигателя в 15-20 раз.

Но начиная со скорости полета 700-800 километров в

час и по мере приближения ее к скорости звука

сопротивление воздуха увеличивается еще более резко.

Кроме того, коэффициент полезного действия воздушного

винта достаточно высок лишь при скоростях полета, не

превышающих 700-800 километров в час. С дальнейшим ростом

скорости он резко снижается. Поэтому, несмотря на все

старания авиаконструкторов, даже у лучших самолетов-

истребителей с поршневыми моторами мощностью 2500-3000

лошадиных сил максимальная скорость горизонтального

полета не превышала 800 километров в час.

Как видим, для освоения больших высот и дальнейшего

увеличения скорости был нужен новый авиационный

docsity.com

двигатель, тяга и мощность которого с увеличением

скорости полета не падали бы, а возрастали.

И такой двигатель был создан. Это – авиационный

реактивный двигатель. Он был значительно мощнее и легче

громоздких винтомоторных установок. Использование этого

двигателя в конце концов позволило авиации перешагнуть

звуковой барьер.

Часть 2. Принцип работы и классификация

реактивных двигателей.

Чтобы понять принцип работы реактивного двигателя,

вспомним, что происходит при выстреле из любого

огнестрельного оружия. Каждому, кто стрелял из ружья или

пистолета, известно действие отдачи. В момент выстрела

пороховые газы с огромной силой равномерно давят во все

стороны. Внутренние стенки ствола, дно пули или снаряда и

дно гильзы, удерживаемой затвором, испытывают это

давление.

Силы давления на

стенки ствола взаимно

уравновешиваются. Дав-

ление пороховых газов

на пулю (снаряд) вы-

брасывает ее из вин-

товки (орудия), а дав-

ление газов на дно

гильзы и является при-

чиной отдачи (рис.1).

Отдачу легко сделать и источником непрерывного

движения. Вообразим себе, например, что мы поставили на

легкую тележку станковый пехотный пулемет. Тогда при

непрекращающейся стрельбе из пулемета она покатится под

влиянием толчков отдачи в сторону, противоположную

направлению стрельбы.

На таком принципе и основано действие реактивного

двигателя. Источником движения в реактивном двигателе

служит реакция или отдача газовой струи.

В закрытом сосуде

находится сжатый газ (рис.2а).

Давление газа равномерно

распределяется на стенки

сосуда, который при этом

остается неподвижным. Но если

удалить одну из торцовых

стенок сосуда, то сжатый газ,

стремясь расшириться, начнет

Рисунок 1.

Рисунок 2.

docsity.com

быстро вытекать из отверстия

наружу.

Давление газа на противоположную по отношению к

отверстию стенку уже не будет уравновешиваться, и сосуд,

если он не закреплен, начнет двигаться (рис.2б). Важно

отметить, что чем больше давление газа, тем больше

скорость его истечения, и тем быстрее будет двигаться

сосуд.

Для работы реактивного двигателя достаточно сжигать в

резервуаре порох или иное горючее вещество. Тогда

избыточное давление в сосуде вынудит газы непрерывно

вытекать в виде струи продуктов сгорания в атмосферу со

скоростью тем большей, чем выше давление внутри самого

резервуара и чем меньше давление снаружи. Истечение газов

из сосуда происходит под влиянием силы давления,

совподающей с направлением выходящей через отверстие

струи. Следовательно неизбежно появится и другая сила

равной величины и противоположного направления. Она-то и

заставит резервуар двигаться. Эта сила носит название силы

реактивной тяги.

Все реактивные двигатели можно подразделить на

несколько основных классов . Рассмотрим группировку

реактивных двигателей по роду используемого в них

окислителя (рис.3).

В первую группу вхо-

дят реактивные двигатели с

собственным окислителем,

так называемые ракетные

двигатели. Эта группа в

свою очередь состоит из

двух классов: ПРД –

пороховых реактивных дви-

гателей и ЖРД – жидкостных

реактивных двигателей.

В пороховых реактив-

ных двигателях топливо од-

новременно содержит горю-

чее и необходимый для его

сгорания окислитель. Прос-

тейшим ПРД является хорошо

всем известная фейерве-

рочная ракета. В таком

двигателе порох сгорает в

течение нескольких секунд

или даже долей секунды.

Развиваемая при этом

реактивная тяга довольно

значительна. Запас топлива

ограничен объемом камеры

сгорания.

Рисунок 3. Классификация реактивных

двигателей.

docsity.com

В конструктивном отношении ПРД исключительно прост.

Он может применяться как непродолжительно работающая, но

создающая все же достаточно большую силу тяги установка.

В жидкостных реактивных двигателях в состав топлива в

состав топлива входит какая-либо горючая жидкость (обычно

керосин или спирт) и жидкий кислород или какое-нибудь

кислородосодержащее вещество (например, перекись водорода

или азотная кислота). Кислород или заменяющее его

вещество, необходимое для сжигания горючего, принято

называть окислителем. При работе ЖРД горючее и окислитель

непрерывно поступают в камеру сгорания; продукты сгорания

извергаются наружу через сопло.

Жидкостный и пороховой реактивные двигатели, в

отличие от остальных, способны работать в безвоздушном

пространстве.

Вторую группу образуют воздушно-реактивные двигатели

– ВРД, использующие окислитель из воздуха. Они в свою

очередь подразделяются на три класса: прямоточные ВРД

(ПВРД), пульсирующие ВРД (ПуВРД), и турбореактивные

двигатели (ТРД).

В прямоточном (или

бескомпрессорном) ВРД го-

рючее сжигается в камере

сгорания в атмосферном

воздухе, сжатом своим

собственным скоростным на-

пором (рис.4). Сжатие воз-

духа осуществляется по за-

кону Бернулли. Согласно

этому закону, при движении

жидкости или газа по

расширяющемуся каналу ско-

рость струи уменьшается,

что ведет к повышению дав-

ления газа или жидкости.

Для этого в ПВРД предусмотрен диффузор –

расширяющийся канал, по которому атмосферный воздух

попадает в камеру сгорания.

Площадь выходного сечения сопла обычно значительно

больше площади входного сечения диффузора. Кроме того по

поверхности диффузора давление распределяется иначе и

имеет большие значения, чем на стенках сопла. В результате

действия всех этих сил возникает реактивная тяга.

КПД прямоточного ВРД при скорости полета 1000

километров в час равен примерно 8-9%. А при увеличении

этой скорости в 2 раза КПД в ряде случаев может достигнуть

30% - выше, чем у поршневого авиадвигателя. Но надо

заметить, что ПВРД обладает существенным недостатком:

такой двигатель не дает тяги на месте и не может,

следовательно, обеспечить самостоятельный взлет самолета.

Рисунок 4. Принципиальная схема

прямоточного ВРД

docsity.com

Сложнее устроен турбореактивный двигатель (ТРД). В

полете встречный воздух проходит через переднее входное

отверстие к компрессору и сжимается в несколько раз

(рис.5). Сжатый компрессором воздух попадает в камеру

сгорания, куда впрыскивается жидкое горючее (обычно

керосин); образующиеся при сгорании этой смеси газы

подаются к лопаткам газовой турбины.

Диск турбины за-

креплен на одном валу с

колесом компрессора,

поэтому горячие газы,

проходящие через турби-

ну, приводят ее во вра-

щение вместе с компрес-

сором. Из турбины газы

попадают в сопло. Здесь

давление их падает, а

скорость возрастает.

Выходящая из двигателя

газовая струя создает

реактивную тягу.

В отличие от прямоточного ВРД турбореактивный

двигатель способен развивать тягу и при работе на месте.

Он может самостоятельно обеспечить взлет самолета. Для

запуска ТРД применяются специальные пусковые устройства:

электростартеры и газотурбостартеры.

Экономичность ТРД на дозвуковых скоростях полета

намного выше, чем прямоточного ВРД. И только на

сверхзвуковых скоростях порядка 2000 километров в час

расход горючего для обоих типов двигателей становится

примерно одинаковым.

Часть 3. Краткая история развития

реактивной авиации.

Самым известным и наиболее простым реактивным

двигателем является пороховая ракета, много столетий

назад изобретенная в древнем Китае. Естественно, что

пороховая ракета оказалась первым реактивным двигателем,

который попытались использовать в качестве авиационной

силовой установки.

В самом ночале 30-х годов в СССР развернулись

работы, связанные с созданием реактивного двигателя для

летательных аппаратов. Советский инженер Ф.А.Цандер еще в

1920 году высказал идею высотного ракетного самолета. Его

двигатель “ОР-2”, работавший на бензине и жидком

кислороде, предназначался для установки на опытный

самолет.

Рисунок 5. Схема работы ТРД.

docsity.com

В Германии при участии инженеров Валье, Зенгера,

Опеля и Штаммера начиная с 1926 года систематически

производились эксперименты с пороховыми ракетами,

устанавливавшимися на автомобиль, велосипед, дрезину и,

наконец, на самолет. В 1928 году были получены первые

практические результаты: ракетный автомобиль показал

скорость около 100 км/час, а дрезина – до 300 км/час. В

июне того же года был осуществлен первый полет самолета с

пороховым реактивным двигателем. На высоте 30 м. Этот

самолет пролетел 1,5 км., продержавшись в воздухе всего

одну минуту. Спустя немногим более года полет был

повторен, причем была достигнута скорость полета 150

км/час.

К концу 30-х годов нашего века в разных странах

велись исследовательские, конструкторские и

экспериментальные работы по созданию самолетов с

реактивными двигателями.

В 1939 году в СССР состоялись летные испытания

прямоточных воздушно-реактивных двигателей (ПВРД) на

самолете “И-15” конструкции Н.Н.Поликарпова. ПВРД

конструкции И.А.Меркулова были установлены на нижних

плоскостях самолета в качестве дополнительных моторов.

Первые полеты проводил опытный летчик-испытатель

П.Е.Логинов. На заданной высоте он разгонял машину до

максимальной скорости и включал реактивные двигатели.

Тяга дополнительных ПВРД увеличивала максимальную

скорость полета. В 1939 году были отработаны надежный

запуск двигателя в полете и устойчивость процесса

горения. В полете летчик мог неоднократно включать и

выключать двигатель и регулировать его тягу. 25 января

1940 года после заводской отработки двигателей и проверки

их безопасности во многих полетах состоялось официальное

испытание - полет самолета с ПВРД. Стартовав с

Центрального аэродрома имени Фрунзе в Москве, летчик

Логинов включил на небольшой высоте реактивные двигатели

и сделал несколько кругов над районом аэродрома.

Эти полеты летчика Логинова в 1939 и 1940 годах были

первыми полетами на самолете со вспомогательными ПВРД.

Вслед за ним в испытании этого двигателя приняли участие

летчики-испытатели Н.А.Сопоцко, А.В.Давыдов и А.И.Жуков.

Летом 1940 года эти двигатели были установлены и испытаны

на истребителе И-153 “Чайка” конструкции Н.Н.Поликарпова.

Они увеличивали скорость самолета на 40-50 км/час.

Однако при скоростях полета, которые могли развивать

винтовые самолеты, дополнительные бескомпрессорные ВРД

расходовали очень много горючего. Есть у ПВРД еще один

важный недостаток: такой двигатель не дает тяги на месте

и не может, следовательно, обеспечить самостоятельный

взлет самолета. Это означает, что самолет с подобным

двигателем должен быть обязательно снабжен какой-либо

docsity.com

вспомогательной стартовой силовой установкой, например

винтомоторной, иначе ему не подняться в воздух.

В конце 30-х – начале 40-х годов нашего столетия

разрабатывались и испытывались первые самолеты с

реактивными двигателями других типов.

Один из первых полетов человека на самолете с

жидкостным реактивным двигателем (ЖРД) был также совершен

в СССР. Советский летчик В.П.Федоров в феврале 1940 года

испытал в воздухе ЖРД отечественной конструкции. Летным

испытаниям предшествовала большая подготовительная

работа. Спроектированный инженером Л.С.Душкиным ЖРД с

регулируемой тягой прошел всесторонние заводские

испытания на стенде. Затем его установили на планер

конструкции С.П.Королева. После того, как двигатель

успешно прошел наземные испытания на планере, приступили

к летным испытаниям. Реактивный самолет отбуксировали

обычным винтовым самолетом на высоту 2 км. На этой высоте

летчик Федоров отцепил трос и, отлетев на некоторое

расстояние от самолета-буксировщика, включил ЖРД.

Двигатель устойчиво работал до полного израсходования

топлива. По окончании моторного полета летчик

благополучно спланировал и приземлился на аэродроме.

Эти летные испытания явились важной ступенью на пути

создания скоростного реактивного самолета.

Вскоре советский конструктор В.Ф.Болховитинов

спроектировал самолет, на котором в качестве силовой

установки был использован ЖРД Л.С.Душкина. Несмотря на

трудности военного времени, уже в декабре 1941 года

двигатель был построен. Параллельно создавался и самолет.

Проектирование и постройка этого первого в мире

истребителя с ЖРД были завершены в рекордно короткий

срок: всего за 40 дней. Одновременно шла подготовка и к

летным испытаниям. Проведение первых испытаний в воздухе

новой машины, получившей марку “БИ”, было возложено на

летчика-испытателя капитана Г.Я.Бахчиванджи.

15 мая 1942 года состоялся первый полет боевого

самолета с ЖРД. Это был небольшой остроносый самолет-

моноплан с убирающимся в полете шасси и хвостовым

колесом. В носовом отсеке фюзеляжа помещались две пушки

калибром 20 мм, боезапас к ним и радиоаппаратура. Далее

были расположены кабина пилота, закрытая фонарем, и

топливные баки. В хвостовой части находился двигатель.

Полетные испытания прошли успешно.

В годы Великой Отечественной войны советские

авиаконструкторы работали и над другими типами

истребителей с ЖРД. Конструкторский коллектив,

руководимый Н.Н.Поликарповым, создал боевой самолет

“Малютка”. Другой коллектив конструкторов во главе с

М.К.Тихонравовым разработал реактивный истребитель марки

“302”.

docsity.com

Работы по созданию боевых реактивных самолетов

широко проводились и за рубежом.

В июне 1942 года состоялся первый полет немецкого

реактивного истребителя-перехватчика “Ме-163” конструкции

Мессершмитта (рис.6). Только девятый вариант этого

самолета был запущен в серийное производство в 1944 году.

Впервые этот самолет с

ЖРД был применен в боевой

обстановке в середине 1944

года при вторжении союзни-

ческих войск во Францию. Он

предназначался для борьбы с

бомбардировщиками и истре-

бителями противника над

немецкой территорией. Само-

лет представлял собой

моноплан без горизонталь-

ного хвостового оперения,

что оказалось возможным

благодаря большой стрело-

видности крыла.

Фюзеляжу была придана обтекаемая форма. Наружные

поверхности самолета были очень гладкие. В носовом отсеке

фюзеляжа размещалась ветрянка для привода генератора

электросистемы самолета. В хвостовой части фюзеляжа

устанавливался двигатель – ЖРД с тягой до 15 кН. Между

корпусом двигателя и обшивкой машины имелась огнеупорная

прокладка. Баки с горючим были размещены в крыльях, а с

окислителями – внутри фюзеляжа. Обычного шасси на

самолете не было. Взлет происходил с помощью специальной

стартовой тележки и хвостового колеса. Сразу же после

взлета эта тележка сбрасывалась, а хвостовое колесо

убиралось внутрь фюзеляжа. Управление самолетом

производилось посредством руля поворота, установленного,

как обычно, за килем, и размещенных в плоскости крыла

рулей высоты, которые одновременно являлись и элеронами.

Посадка производилась на стальную посадочную лыжу длиной

около 1,8 метра с полозом шириной 16 сантиметров. Обычно

самолет взлетал, используя тягу установленного на нем

двигателя. Однако по замыслу конструктора была

предусмотрена возможность использования подвесных

стартовых ракет, которые сбрасывались после взлета, а

также возможность буксировки другим самолетом до нужной

высоты. При работе ЖРД в режиме полной тяги самолет мог

набирать высоту почти по вертикали. Размах крыльев

самолета составлял 9,3 метра, его длина – около 6 метров.

Полетный вес при взлете был равен 4,1 тонны, при посадке

– 2,1 тонны; следовательно, за все время моторного полета

самолет становился почти вдвое легче – расходовал

примерно 2 тонны топлива. Длина разбега была более 900

Рисунок 6. Немецкий истребитель-

перехватчик с ЖРД “Ме-163”.

docsity.com

метров, скороподъемность – до 150 метров в секунду.

Высоту в 6 километров самолет достигал через 2,5 минуты

после взлета. Потолок машины был 13,2 километра. При

непрерывной работе ЖРД полет продолжался до 8 минут.

Обычно по достижении боевой высоты двигатель работал не

непрерывно, а периодически, причем самолет то планировал,

то разгонялся. В результате общая продолжительность

полета могла быть доведена до 25 минут и даже более. Для

такого режима работы характерны значительные ускорения:

при включении ЖРД на скорости 240 километров в час

самолет достигал скорости 800 километров в час спустя 20

секунд (за это время он пролетал 5,6 километров со

средним ускорением 8 метров в секунду квадрат). У земли

этот самолет развивал максимальную скорость 825

километров в час, а в интервале высот 4-12 километров его

максимальная скорость возрастала до 900 километров в час.

В тот же период в ряде стран велись интенсивные

работы по созданию воздушно-реактивных двигателей (ВРД)

различных типов и конструкций. В Советском Союзе, как уже

говорилось, испытывался прямоточный ВРД, установленный на

самолете-истребителе.

В Италии в августе 1940 года был совершен первый 10-

минутный полет реактивного самолета-моноплана “Кампини-

Капрони СС-2” (рис.7). На этом самолете был установлен

так называемый мотокомпрессорный ВРД (этот тип ВРД не

рассматривался в обзоре реактивных двигате-лей, так как

он оказался невыгодным и распространения не получил).

Воздух входил через специальное отверстие в передней

части фюзеляжа в трубу переменного сечения, где

поджимался компрессором, который получал вращение от

расположенного позади звез-дообразного поршневого авиа-

мотора мощностью 440 лошади-ных сил.

Затем поток сжатого воздуха омывал этот поршневой

мотор воздушного охлаждения и несколько нагревался. Перед

поступлением в камеру сгорания воздух смешивался с

выхлопными газами от этого мотора. В камере сгорания,

куда впрыскивалось топливо, в результате его сжигания

температура воздуха повышалась еще больше.

Газовоздушная смесь,

вытекавшая из сопла в хвост-

овой части фюзеляжа, созда-

вала реактивную тягу этой

силовой установки. Площадь

выходного сечения реактивно-

го сопла регулировалась пос-

редством конуса, могущего

перемещаться вдоль оси

сопла. Кабина пилота распо-

лагалась вверху фюзеляжа над

трубой для потока воздуха,

Рисунок 7. Самолет “Кампини-Капрони ”:

а – вид сбоку в полете;

б – вид спереди на земле.

docsity.com

проходящей через весь фюзе-

ляж. В ноябре 1941 года на

этом самолете был совершен

перелет из Милана в Рим (с

промежуточной посадкой в

Пизе для заправки горючим),

длившийся 2,5 часа, причем

средняя скорость полета

составила 210 километров в

час.

Как видим, реактивный самолет с двигателем,

выполненным по такой схеме, оказался неудачным: он был

лишен главного качества реактивного самолета –

способности развивать большие скорости. К тому же расход

горючего у него был весьма велик.

В мае 1941 года в Англии состоялся первый

испытательный полет экспериментального самолета Глостер

“Е-28/39” с ТРД с центробежным компрессором конструкции

Уиттла (рис.8).

При 17 тысячах оборо-

тов в минуту этот двигатель

развивал тягу около 3800

ньютонов. Экспериментальный

самолет представлял собой

одноместный истребитель с

одним ТРД, расположенным в

фюзеляже позади кабины пило-

та. Самолет имел убирающееся

в полете трехколесное шасси.

Полтора года спустя, в октябре 1942 года, было

проведено первое летное испытание американского

реактивного самолета-истребителя “Эркомет” Р-59А с двумя

ТРД конструкции Уиттла (рис.9). Это был моноплан со

среднерасположенным крылом и с высокоустановленным

хвостовым оперением.

Носовая часть фюзеляжа

была сильно вынесена вперед.

Самолет был оснащен трехко-

лесным шасси; полетный вес

машины составлял почти 5

тонн, потолок – 12 километ-

ров. При летных испытаниях

была достигнута скорость 800

километров в час.

Среди других самолетов с ТРД этого периода следует

отметить истребитель Глостер “Метеор”, первый полет

которого состоялся в 1943 году. Этот одноместный

цельнометаллический моноплан оказался одним из наиболее

удачных реактивных самолетов-истребителей того периода.

Два ТРД были установлены на низкорасположенном

Рисунок 8. Самолет Глостер “Е -28/39”

Рисунок 9. Самолет “Эркомет” Р-59А

docsity.com

свободнонесущем крыле. Серийный боевой самолет развивал

скорость 810 километров в час. Продолжительность полета

составляла около 1,5 часов, потолок – 12 километров.

Самолет имел 4 автоматические пушки калибра 20

миллиметров. Машина обладала хорошей маневренностью и

управляемостью на всех скоростях.

Этот самолет был первым реактивным истребителем,

применявшемся в боевых воздушных операциях союзной

авиации в борьбе против немецких самолетов-снарядов “V-1”

в 1944 году. В ноябре 1941 года на специальном рекордном

варианте этой машины был установлен мировой рекорд

скорости полета – 975 километров в час.

Это был первый офици-

ально зарегистрированный

рекорд, установленный на

реактивном самолете. Во

время этого рекордного

полета ТРД развивали тягу

примерно по 16 килоньютонов

каждый, а потребление горю-

чего соответствовало расходу

приблизительно 4,5 тысячи

литров в час.

В годы второй мировой войны несволько типов боевых

самолетов с ТРД было разработано и испытано в Германии.

Укажем на двухмоторный истребитель “Ме-262” (рис.10),

развивавший максимальную скорость 850-900 километров в

час (в зависимости от высоты полета) и четырехмоторный

бомбардировщик “Арадо-234” (рис.11).

Истребитель “Ме-262”

был наиболее отработанной

и доведенной конструкцией

среди многочисленных

типов немецких реактивных

машин периода второй

мировой вой-ны. Боевая

машина была вооружена

четырьмя автома-тическими

пушками калибром 30

миллиметров.

На заключительном этапе Великой Отечественной войны

в феврале 1945 года трижды Герой Советского Союза

И.Кожедуб в одном из воздушных боев над территорией

Германии впервые сбил реактивный самолет врага – “Ме-

262”. В этом воздушном поединке решающим оказалось

преимущество в маневренности, а не в скорости

(максимальная скорость винтового истребителя “Ла-5” на

высоте 5 километров была равна 622 километра в час, а

реактивного истребителя “Ме-262” на той же высоте – около

850 километров в час).

Рисунок 11. Бомбардировщик “Арадо-234”

Рисунок 10. Истребитель “Ме-262”

docsity.com

Интересно отметить, что первые немецкие реактивные

самолеты оснащались ТРД с осевым компрессором, причем

максимальная тяга двигателя была менее 10 килоньютонов. В

то же время английские реактивные истребители были

оборудованы ТРД с центробежным компрессором, развивающим

примерно вдвое большую тягу.

Уже в начальный пе-

риод развития реактивных

машин прежние знакомые

формы самолетов претер-

певали более или менее

значительные изменения.

Весьма необычно выглядел,

например, английский ре-

активный истребитель

“Вампир” (рис.12) двухба-

лочной конструкции.

Еще более непривычным для глаза был

экспериментальный английский реактивный самолет “Летающее

крыло” (рис.13). Этот бесфюзеляжный и бесхвостый самолет

был выполнен в виде крыла, в котором размещались экипаж,

горючее и т.д. Органы стабилизации и управления также

были установлены на самом крыле. Достоинством этой схемы

является минимальное лобовое сопротивление. Известные

трудности представляет решение проблемы устойчивости и

управляемости “Летающего крыла”.

При разработке этого самолета

ожидалось, что стреловидность крыла

позволит добиться большой устойчивости

в полете при одновременном

существенном уменьшении сопротивления.

Английская авиационная фирма “Де-

Хевиленд”, построившая самолет,

предполагала использовать его для

изучения явлений сжимаемости воздуха и

устойчивости полета при больших

скоростях. Стреловидность крыла этого

цельнометаллического самолета

составляла 40 градусов. Силовая

установка состояла из одного ТРД. На

концах крыльев в специальных

обтекателях находились

противоштопорные парашюты.

В мае 1946 года самолет “Летающее крыло” быс впервые

испытан в пробном полете. А в сентябре того же года во

время очередного испытательного полета он потерпел аварию

и разбился. Пилотировавший его летчик трагически погиб.

В нашей стране в годы Великой Отечественной войны

начались обширные исследовательские работы по созданию

боевых самолетов с ТРД. Война ставила задачу – создать

Рисунок 12. Истребитель “Вампир”

Рисунок 13. Самолет

“Летающее крыло”.

docsity.com

самолет-истребитель, обладающий не только большой

скоростью, но и значительной продолжительностью полета:

ведь разработанные реактивные истребители с ЖРД имели

весьма малую продолжительность полета – всего 8-15 минут.

Были разработаны боевые самолеты с комбинированной

силовой установкой – винтомоторной и реактивной. Так,

например, истребители “Ла-7” и “Ла-9” были снабжены

реактивными ускорителями.

Работа над одним из первых советских реактивных

самолетов началась еще в 1943-1944 годах. Эта боевая

машина создавалась конструкторским коллективом,

возглавляемым генералом инженерно-авиационной службы

Артемом Ивановичем Микояном. То был истребитель “И-250” с

комбинированной силовой установкой, которая состояла из

поршневого авиадвигателя жидкостного охлаждения типа

“ВК-107 А” с воздушным винтом и ВРД, компрессор которого

получал вращение от поршневого мотора. Воздух поступал в

воздухозаборник под валом винта, проходил по каналу под

каби