Docsity
Docsity

Prüfungen vorbereiten
Prüfungen vorbereiten

Besser lernen dank der zahlreichen Ressourcen auf Docsity


Download-Punkte bekommen.
Download-Punkte bekommen.

Heimse Punkte ein, indem du anderen Studierenden hilfst oder erwirb Punkte mit einem Premium-Abo


Leitfäden und Tipps
Leitfäden und Tipps

Aufgaben Theoretische Nichtlineare Physik II, Übungen von Theoretische Physik

̈Übungen zu Theoretische Nichtlineare Physik II von Prof. Dr. U. Thiele der Westfälische Wilhelms - Universität Münster (WWU)

Art: Übungen

2019/2020

Hochgeladen am 09.04.2020

akincalha90
akincalha90 🇩🇪

4.5

(14)

64 dokumente

1 / 3

Toggle sidebar

Diese Seite wird in der Vorschau nicht angezeigt

Lass dir nichts Wichtiges entgehen!

bg1
¨
Ubungen Theoretische Nichtlineare Physik II, SoSe 2017
Prof. Dr. U. Thiele
¨
Ubungen im WWW: http://pauli.uni-muenster.de/tp/
Problem Sheet 3: To hand in until: 29.05.2017
Problem 1: Transport Equations
a) Write the equations
tρ=·(ρv) (1)
t(ρv) = ·(ρvv +P) + f(2)
in index notation and simplify Eq. (2) by inserting Eq. (1). Note that the tensor vv in index
notation is vivj.
b) Take the resulting equation and specify P=p1ηv+ (v)T.Simplify and obtain the Navier-
Stokes (NS) equation
ρv
∂t + (v·)v=p+ηv+f.(3)
Problem 2: Chanel Flow
L
x
z
v(z)
The NS Eq. (3) (for f= 0) can be solved in constrained geometries under certain assumptions. Here
we consider a two dimensional flow between two plates, and assume that the velocity field has only a
component in x-direction that is independent of x(see also figure above). Simplify the Navier-Stokes
equation for this geometry and for a constant pressure gradient in x-direction and solve for steady velocity
profiles in the following cases:
a) No-slip boundary conditions at the plates (v(0) = v(L) = 0).
b) Navier-slip boundary conditions (v(0) = b zv(0), v(L) = b zv(L), where bis the slip-length).
c) Navier-slip boundary conditions for bL.
1
pf3

Unvollständige Textvorschau

Nur auf Docsity: Lade Aufgaben Theoretische Nichtlineare Physik II und mehr Übungen als PDF für Theoretische Physik herunter!

¨Ubungen Theoretische Nichtlineare Physik II, SoSe 2017

Prof. Dr. U. Thiele

Ubungen im WWW:¨ http://pauli.uni-muenster.de/tp/

Problem Sheet 3: To hand in until: 29.05.

Problem 1: Transport Equations

a) Write the equations

∂tρ = −∇ · (ρv) (1) ∂t(ρv) = −∇ · (ρvv + P ) + f (2)

in index notation and simplify Eq. (2) by inserting Eq. (1). Note that the tensor vv in index notation is vivj. b) Take the resulting equation and specify P = p 1 −η

∇v + (∇v)T^

. Simplify and obtain the Navier- Stokes (NS) equation

ρ

[

∂v ∂t

  • (v · ∇)v

]

= −∇p + η ∆v + f. (3)

Problem 2: Chanel Flow

L

x

z

v(z)

The NS Eq. (3) (for f = 0) can be solved in constrained geometries under certain assumptions. Here we consider a two dimensional flow between two plates, and assume that the velocity field has only a component in x-direction that is independent of x (see also figure above). Simplify the Navier-Stokes equation for this geometry and for a constant pressure gradient in x-direction and solve for steady velocity profiles in the following cases:

a) No-slip boundary conditions at the plates (v(0) = v(L) = 0). b) Navier-slip boundary conditions (v(0) = b ∂z v(0), v(L) = −b ∂z v(L), where b is the slip-length). c) Navier-slip boundary conditions for b  L.

Problem 3: Nondimensionalisation of the NS equation with boundary conditions

Consider the incompressible 2D NS Eq. (3) and the boundary conditions for a free surface including Marangoni and capillary forces. When n and t are the normal and tangential vectors at the surface, the continuity of the forces at the surface yields: normal force n · (τ 1 − τ 2 ) · n = γκ (4)

tangential force t · (τ 1 − τ 2 ) · n = ∂γ ∂s

Nondimensionalise the NS equation and the boundary conditions. To do so, write the boundary con- ditions componentwise using τ = η

∇v + (∇v)T^

. Write γ(s) as γ(s) = γ 0 (1 + γΓ γ 0 ξ(s)), where^ ξ^ is dimensionless. Introduce general scales l 0 , v 0 , t 0 = l 0 v 0 , p 0 = ρv^20 for length, velocity, time and pressure,

respectively. Scale the curvature κ with^1 l 0 and define the following dimensionless parameters:

Reynolds number Re = ρv^0 l^0 η ; Marangoni number Ma = γΓ v 0 η ; Capillary number Ca = v^0 η γ 0

Problem 4: Long wave expansion of the NS equation (thin film equation)

x

z

h(x)

We now introduce two different spatial scales to describe a thin film on a substrate, where typical length scales in x-direction (along the substrate) are much larger than those in z-direction: z = l 0 z′, x = L 0 x′^ = l 0  x,^ ^ ^ 1. Furthermore, we consider a free surface between the liquid and a stress-free gas phase (τ 2 ≈ 0 ). The free surface is assumed to be without overhangs and can therefore be described by a height profile h(x), yielding the tangential and normal vectors and the curvature

n = (−∂xh, 1) (1 + (∂xh)^2 )^1 /^2 , t = (1, ∂xh) (1 + (∂xh)^2 )^1 /^2 , κ = −∂xxh (1 + (∂xh)^2 )^3 /^2

In order to approximately solve the Navier-Stokes equation for v = (u, w) combined with the continuity equation ∇ · v = 0, the following boundary conditions are needed additionally to the stress continuity at the free surface: No-slip and no-penetration at the solid boundary: v(z = 0) = 0 (7) Kinematic boundary condition at the free surface: w = ∂th + u∂xh. (8)

a) Rescale all boundary conditions and the bulk equations similarily to the scaling in the previous exercise but with the two different spatial scales as outlined above. Omit Marangoni forces. As the rescaled continuity equation should not contain the smallness parameter , one can deduce which scaling of the two velocities u, w one has to choose. b) Show that in lowest order in  you arrive at the following set of equations (for the rescaled variables): bulk equations: uzz = px; pz = 0; ux + wz = 0 (9)

boundary conditions: w = ∂th + u∂xh; uz = 0; p = − hxx Ca^ ˜

at z = h(x) (10)

u = w = 0 at z = 0. (11) The term in the boundary condition due to capillarity is not of lowest order but essential for further derivations. The capillary number Ca defined in the previous exercise is therefore rescaled by a certain power of  to obtain Ca.˜