Docsity
Docsity

Prüfungen vorbereiten
Prüfungen vorbereiten

Besser lernen dank der zahlreichen Ressourcen auf Docsity


Download-Punkte bekommen.
Download-Punkte bekommen.

Heimse Punkte ein, indem du anderen Studierenden hilfst oder erwirb Punkte mit einem Premium-Abo


Leitfäden und Tipps
Leitfäden und Tipps

Klausur Methoden der Statistik I WiSe 18/19 mit Kurzlösung Uni Bamberg, Prüfungen von Statistik

Altklausur mit Kurzlösung zu Methoden der Statistik I im Wintersemester 2018/2019

Art: Prüfungen

2019/2020
Sonderangebot
30 Punkte
Discount

Zeitlich begrenztes Angebot


Hochgeladen am 26.10.2020

Tony_Stube
Tony_Stube 🇩🇪

4.7

(15)

1 / 8

Toggle sidebar

Diese Seite wird in der Vorschau nicht angezeigt

Lass dir nichts Wichtiges entgehen!

bg1
Lehrstuhl f¨
ur Statistik und ¨
Okonometrie
der Otto-Friedrich-Universit¨
at Bamberg
Klausur zu Methoden der Statistik I (mit Kurzl¨
osung)
Wintersemester 2018/19
Aufgabe 1
Bei den Bayerischen Landtagswahlen 2018 erlangten die Parteien folgende Sitze:
Partei Anzahl der Sitze
CSU 85
Gr¨
une 38
FW 27
AfD 22
SPD 22
FDP 11
a) Bestimmen Sie Merkmalstr¨
ager, Merkmalstyp und Skalenniveau.
b) Stellen Sie die relativen H¨
aufigkeiten der Sitzverteilung tabellarisch und grafisch dar.
c) Inwiefern ¨
andert sich die grafische Darstellung aus Teilaufgabe b), wenn Sie statt der relati-
ven die absoluten H¨
aufigkeiten abtragen? [Hinweis: Zeichnung nicht notwendig.]
d) Bestimmen und interpretieren Sie die normierte Entropie der Verteilung.
pf3
pf4
pf5
pf8
Discount

Sonderangebot

Unvollständige Textvorschau

Nur auf Docsity: Lade Klausur Methoden der Statistik I WiSe 18/19 mit Kurzlösung Uni Bamberg und mehr Prüfungen als PDF für Statistik herunter!

Lehrstuhl f¨ur Statistik und ¨Okonometrie der Otto-Friedrich-Universit¨at Bamberg

Klausur zu Methoden der Statistik I (mit Kurzl¨osung) Wintersemester 2018/

Aufgabe 1

Bei den Bayerischen Landtagswahlen 2018 erlangten die Parteien folgende Sitze:

Partei Anzahl der Sitze CSU 85 Gr¨une 38 FW 27 AfD 22 SPD 22 FDP 11

a) Bestimmen Sie Merkmalstr¨ager, Merkmalstyp und Skalenniveau. b) Stellen Sie die relativen H¨aufigkeiten der Sitzverteilung tabellarisch und grafisch dar. c) Inwiefern ¨andert sich die grafische Darstellung aus Teilaufgabe b), wenn Sie statt der relati- ven die absoluten H¨aufigkeiten abtragen? [Hinweis: Zeichnung nicht notwendig.] d) Bestimmen und interpretieren Sie die normierte Entropie der Verteilung.

Aufgabe 2

Die Lebenszufriedenheit kann von vielen Faktoren abh¨angen. Eine davon ist sicher die Note in der Klausur Methoden der Statistik I. In der folgenden Tabelle sind von 7 Studierenden die Note in der Klausur Methoden der Statistik I (U ) sowie die Lebenszufriedenheit auf einer zehnstufigen Skala (V ) von 1 sehr unzufrieden bis 10 sehr zufrieden abgetragen:

Studierende Klausurnote U Zufriedenheit V

a) Welche Skalenniveaus weisen die beiden Variablen auf? b) Berechnen Sie den Rangkorrelationskoeffizienten nach Spearman und interpretieren Sie das Ergebnis. c) Wie hoch ist in diesem Fall der Unterschied des Ergebnisses zwischen den Ihnen bekannten Formel-Varianten des Rangkorrelationskoeffizienten nach Spearman? [Hinweis: keine Rech- nung!] d) Berechnen Sie das obere und untere Quartil sowie den Median f¨ur die Variable Note in der Klausur Methoden der Statistik I (U ). e) F¨ur die univariate Analyse des Merkmals Lebenszufriedenheit (V ) wird vorgeschlagen, das arithmetische Mittel zu berechnen. Warum genau k¨onnte das problematisch sein?

Aufgabe 4

Kleider machen Leute und Ausgaben f¨ur den Kauf einer Jeans k¨onnen sehr unterschiedlich sein. In der Modebranche geht man schon l¨anger davon aus, dass M¨anner teurere Jeans kaufen als Frauen. In der folgenden Tabelle sind die Kosten f¨ur den letzten Jeanskauf (J) in Euro sowie das Geschlecht des K¨aufers bzw. der K¨auferin (S) verzeichnet:

Person Geschlecht S Kosten Jeans J

ν 1 m¨annlich 150

ν 2 weiblich 70

ν 3 m¨annlich 120

ν 4 m¨annlich 90

ν 5 weiblich 90

ν 6 weiblich 50

ν 7 weiblich 20

a) Welches ist die abh¨angige Variable und welches ist die unabh¨angige Variable im vorliegenden Fall? b) Berechnen Sie ein geeignetes Zusammenhangsmaß zwischen der Variable Kosten f¨ur den letzten Jeanskauf (J) und der Variable Geschlecht (S) und interpretieren Sie das Ergebnis.

Im Folgenden wird vermutet, dass die Jeanskaufausgaben in Euro (J) als Pr¨adiktor (unabh¨angi- ge Variable) f¨ur die abh¨angige Variable Friseurausgaben (F ) dienen k¨onnten. Verwenden Sie die berechneten Werte der Varianz f¨ur das Merkmal Kosten der letzten Jeans (J aus der Aufgabe b). [Hinweis: wenn Sie keine Ergebnisse aus Aufgabe b) haben, verwenden Sie f¨ur die Varianz des Merkmals Jeansausgaben s^2 J = 1500]

Person Kosten Jeans J Friseurausgaben F

c) Berechnen Sie die Parameter der ausgleichenden Regressionsgerade. d) Bestimmen Sie die G¨ute der Regression und interpretieren Sie das Bestimmtheitsmaß. Da- zu ist Ihne noch folgende Information gegeben: die Varianz des Merkmals Friseurausgaben betr¨agt s^2 F = 121, 5532. e) Berechnen Sie den Korrelationskoeffizienten nach Pearson auf Basis der Informationen aus Teilaufgabe c) und d).

L¨osungen 1

a) Merkmalstr¨ager: Abgeordnete Merkmalstr¨ager: Qualitativ Skalenniveau: Nominal

b) Tabelle

Partei Anteil rel.H¨aufigkeit fi CSU 85 0, Gr¨une 38 0, FW 27 0, AfD 22 0, SPD 22 0, FDP∑ 11 0, 205 1,

c) keine ¨Anderung; lediglich die Benennung der y-Achse ¨andert sich

d) Entropie HA=-

fi·log 2 (fi)= - (^) ln^1 (2)

fi·ln(fi)= 2,

Normierte Entropie log 2 (K)=log 2 (6)=2, HA*= 22 ,,^2801358496 =0,

hohe Entropie = hohe Streuung

L¨osung 3

a) Tabelle

Jahr 2011 2012 2013 2014 wt,t-1 2,1 1,95%=2% 1,5% 0,85%=0,9% Jahr 2015 2016 2017 2018 wt,t-1 0,3% 0,5% 1,8% 1,92%

b) w18;10= 111100 ,^4 -1=0,114=11,4%

c) Tabelle Jahr 2011 2012 2013 2014 2015 2016 2017 2018 Mt,t-1 1,021 1,0195 1,015 1,0085 1,003 1,0047 1,0177 1, Mt, t-1=

∏t= t=18Mt=1, w18,10= 8

d) p^2 = = 1313 ..^971509 =1.

Preissteigerung 3,4% e) Lorenzkurve der unterfr¨ankischen Automobilzulieferer liegt ¨uber der Lorenzkurve der ober- fr¨ankischen. Daher h¨ohere Konzentration in Oberfranken.

L¨osung 4

a) Abh¨angige Variable: Kosten f¨ur Jeans J Unabh¨angige Variable: Geschlecht S

b) Geeignetes Zusammenhangsmaß: η^2 xFrau=57, xMann= xGesamt=84,

sint^2 = (^) n^1

∑k i=1 si (^2) ·ni= = 17 ·(1800+2675)= 639,

sext^2 = = 17 ·[3826,5337+2865,8949]=956,

η^2 = sext

2 sint^2 +sext^2 =0, Knapp 60% des abh¨angigen Merkmals Jeans wird durch das unabh¨angige Merkmal Ge- schlecht erkl¨art. c) β 1 = s sxyx 2 β 0 =y-β 1 ·x xv F (^) v 150 9 1345 70 39 2730 120 17 2040 90 20 1820 90 22 1980 50 34 1700 (^20) ∑ 40 800 12395 F =25, SJF= 123957 -84, 2857 · 25 , 8571=-408, β 1 = − 1595408 ,, 91846695 =-0, β 0 =25, 8571 + 0, 2561 · 84 , 2857=47,

d) SF^2 =750,1429-25, 85712 =121,

v^2 = (−^408 ,6655)

2 1595 , 9184 · 121 , 5532 =0,

ca. 86% der Variable des abh¨angigen Merkmals wird durch die Regression erkl¨art e) rXY=-0, sehr stark negativer Zusammenhang