Nur auf Docsity: Lade Lösungen Altklausuren Mechanik 2 und mehr Prüfungen als PDF für Mechanik herunter! Klausur 9 Aufgabe 1 10RN/M ↓ Wcq = = · 10 . 83 . 10 = 2133,334 W W WCG 24 EI ↓20 W( = Eg . (3 - (f(2+ 138) . 3 + 13 : 8 +5.B3) = 1660 (WeF Iwx I wx + . (102 . 8 + 5 . 183) = 60 ↑C O = -Wcq + WCF-WCC 0 = - 2133, 33 + 16600 - 600C c = 24 , 12kN AK berechnen : EMB = 0 = 24 , 12 . 10 - 20 . 13 - A . 8 + 10 . 8 . 4 A = 37 ,7 RN EFy = 0 = 37, 7 + B + 24 , 12 - 80 - 20 B = 38, 18KN 37 ,7 po V t + I - 4,11 42, 3 60 18,9 - - I M + 70, 8 Aufgabe 2 A = 40 . 60 = 2400cm2 Iy=1 . 40 . 603 = 720000 cmY Iz= 12 . 60 · 403 = 320000 cm" 1200 + My . 100 . 15 = 0 => My = - 24000kNcM = - 240kNMA 2400 720000 1200 + Mz . 100 . 10 = 0 = Mz = - 16000kNCM = -160 KNMÖB = 2400 320000 Aufgabe 3
MA= 0,5: cos(30)
Stosuchune = Drude
F, = 0)5c0s(209-EA . cos(30°) Stredaung = Zug,
4
“0105
8 Fx=0 =- FAS? (4 cogta0) +4 cos*(60)+ cos(0)) +f
P= A6000-0,05- /5
= AOCorN
Aufaabe 4
a) AK berechnen :
2Ma= O= -5-2-40-44+D-8
D= 625 RN
ZFy=0= -5-AO +625 +A
A=8;t9RN
695
[7s y
6:25
Ly= 2B: 60% = 480001
S$ = AO'b-25=250b6
Vag? £:395-250b = 0,A2AS RNIcm
AROcob
Ronstan = Rein Integral
_ BS- 2500 —
Voc = TW sccn ©,052A RNicm
T = 0, AZAS: LOO + 0,0524:200
= 34 ,42kN
24.42
c) Vwaged = = A,O8RN ¢ A.2RN
d) Vag =0,A245 RNIom
Vac = 60,0524 RN/am
O\AZAS= A)2- aan =? deans 4%, Perm /wogel¢25en —-dDiffreve= 5\2em
2 Ly 25452 246.8 V
detec
0,0524=4,2- =) dethiec £ 4eiPern/ Naga
Anzahl der bagel reicht ous, aber andere Vertei Lang,
Klausur 8 Aufgabe 1 AB = EA = A= A 12 = 0 , 61 -1 = En. = 0 , 4161 E = 0 ,461 Ea = 0, 11541E F2 = 061 EA = 0 , 12 a E ↑[Ma= 0 = - 50 . 4 . 2 + 0, 11541EA.3 . 2 + 0 , 121EA . 0 , 6 . 4 0 = -400 + 0 , 48 AEA 1 = 833, 3 Ame F1 = 96 , 2kN Fz= 100kN & Fyp = 0= Dy -96,2 . 0 , 8321-100 . 0 , 6 By = 140 KN & Fxp = 0 =-Dx + 96 ,2 . 0 ,5547 + 100 . 0 , 8 Dx= 133, 4kN EFx = 0 = Ax- 133 , 4 Ax= 133,4kN EFy = 0 = 140 + Ay- 50 . 4 Ay = 60 kN 100 96,2 Z Z GO 40 + I t -100 D D - - 2 80 -28 x = 1, 2 133, 4 40 60 Mmax= 60 . 1 , 2 . 0 , 5 = 36 KNM N V M
b) Bereich A: Of£x%, EL
Hix)= M- 2H. xa
w'(a=- Ht 3H x,
w'ly)= Hx, + Br” +C4
wlk,) = “Hatt Hira’ teyka tea
wl0)=0 =>¢,=0
wilo)=O => c4=0
Bereich 2: O£%,2L
Mug= M- 2B. x,
w"(m)=- Ht The,
w'ly)= Hx, * Bx, +e > Leiguung
wh, )= “Hats Hig FCy% + Cy
W(x,2L)= wlxg=O) => 2320
WOy4E0® wiligeo) =? cy => fu
MI 2
= wyl%2=0) = a t
SP welxg= l= yt
3er
ee
We ond we > Neigung = °
Aufgolbe 3
Senin
= , wo ee
40) $:403 | A2BAG
Wag> (24 ern. ex v
4o-4-410 = A600
er
Wae =(g44)- 6 8-EL
Ao: Ao: 40 _ AS) A.A _ SOOA
waa ( aa 6 “eet fer
— A294G _ AGO® _ G00A
er et ex
A= A8,86 RO
6433
ane Lave
I +
>
= Vv 4
- 44,33,
35:58 4934
3444
Aufgaibe 4
Leim = = 0,45 RNIem*
Kleber: Ve= 430 RNIM
Nagel: vy=Az RN , d=20amu
Hole: T= 0,35 RN/om*
Ty= Fp AO-35° = 35429um"
Stim= AO-AS- AO = ASOOcm?
Stigny = AO-AO- A2,5 = A2SOcrn®
Swager= 40-5 + AS =+50cm?3
— WsSOO -5 v=
0145 = 35429-10 =? V=AOFRN
. ~ NAO 4A -
2-413 = as59q 2 =? Ve 74,3RN
Soi.
Ve =A8- S =A8 pwiem
NB = Se = V=857RN
v
0135 = 415° 350 =7 V=84,7RN
Aufgobe 3
o=6RNicm™ bei 4O
o=O0 bei 40
oD
30 2 positiv
a ho
x
202
yzmx+b
m= 4O-AO = -0,5
-60-90
A0= -0,5-O+bD
Ao=b
=> Y= -O,Sx%x+ 40
0) O=-O,5X410 =? Oy= ZOHPa 2
) = FM18154 90-385 _ 29,a8om
©) 25> 2-33-4330
29,48 = -O;5xtd4O =? o,=3P,96HMP D
c) -3,896= iw => v= 638, 9eN D
aft.
Tn
2
(30-3°4 233°) + 90 - (38,5- 23,49)? + 44- (48,5 - 29,48)"
4t54 om"
Wy= 24754 = g30,8em°
23148
:\00
2a £282 +7030.8 => M=49)54 km
Aufgabe 4
x
bn
Nip
3 yu
Tmox= 7 A
ny 2
Vinnen as Tmax A~ “Bz )de “b
nw
= 2b-tmax Ce- HPT,
Ztrax: (h-a- 3)
= 2Tmex' 44h -b
us
= -a4
tmox - Fn
aA
=? Vinnen= 76 ¥
Aufaaloe 5
My -409
o= Ww
AK berechnen :
SUp= OF - Pgu+ BL
B= P
A=%3P
o Jule
as|7>
z
gPe
Ane
gon
ole
sl
Omax =
Omox = 3 tmax
M=3-45%
w me
M =3-ASon
on ™ bh
6M = 45V
h
6 gm up. us
n s
cy
&
n
Tmax = 13° 2
Aufgoive 6
= 408° 22133
ma 24eL er
er
~ 52. bY 2-62 42-64 _ 320
a2 eL carn | C44 +4) =4EE
oly = MB 4 Mido = 6M
3€0 «Bel eT
GM = 533,33 => M= 8, 89RHM
er eL
Av€gabe +
Annahme : 2 vapfanle PR verurgacink Vefsonieoung | My=0
My Verorgacit Nerdr enone , P=0
Ad Pahle
AL=0,0Um
EQ=MQOOMNIM = N=P bei 12 Stiiben
cl
P= £000 -0,04- AL = 480NN
D
0,005 - 5= 40
0,005: cos (30°) 5
z
S,= AOOD- 0,005: 5
$g= 4000 -0,005* co830")-S
Hebelorm = 5- cosl3o*)
Wy = A000: 0,005 - 5-(2cos(o*)+ 4- cag 30°)# 4° Cos 60°) 5 = 750Mum
Aufgobe 3
o = 2,S RVI cm
W= I-20? = 785,4 cm?
32
MW: AOo
25= +85,4
=> M=49,CURNM
Hy = “ oh = 43,56 km
Ma= 8, F8RNM
Avfoabe 4
Yeo = Ox+D
2O+30
20-0
m= =25
Yea = 209x-30
Yeq = 215°R- 30
=-10
27 p= AORN 2
Yao =mxrb
m=-40-40 __ 5
ety 3
2z-Zxtb
Yao 3%
4oz- §'(-4) 4+
ese
or";
£5442
yao 3%ts
=-5.(6442
z et
= - 23,33
= Popa 23,33RN 2
Arfoabe 5
AK berechnen:
SMg=O= 20-40 4° 4-40 - AOA
A>33,33R0
V(X) = 33,33 - Fx Ux
= 33,33 —x?
A
Ty = jg 06> A9= 0,05m"
S= 0,6-0,5- 0,25= 0,045m*
2,075
3
T= "G05 J (33,38- -x*)dx = 97k
Aufgabe 6 21 = 10 . 10341667 zI 24 EE dz = 10 . 32 . 10 = 75 GUZ -12 EI ET w(x)= (2x2- x + L) 23 =W(0) = ML WZ 3EI Einspannung y= 0 L 0 = 416 , 67 - 75 + 3 , 333Ma Ma = -102 , 5 kNM Annahme falsch -> M = GUZ 55 , 75 102, 5 30 45 - + - - W M + - 55 , 752 4 4.2S Mmax = - 102 , 5 + 2 . 10 = 52 , 9RUm Aufgabe 7 3q - - 3q + - 3q 5q Ms = 3q Ns = 1000 + 49 - = 1000 +49 + 39 . 100 = 20 = q = 120kN/m D 198 2880 MB = 5q N = 0 , 75q 5q . 100 op = 0 1Es i + 1930 = 20 = q = 75 , 8kN/m Klausur 11 Aufgabe 1 a) AK berechnen : EMA= 0 = - F . 2 + B . 3L B = F A = F Bereich 1 : 01X124 ; El = 1 Bereich 1 : OX2L , El = 1 2 M(x1) = EFx , M(Xz) = 5FXZ Z W"(x) = - 5FXn W"(xz) = - 5Fx 2 w(x) = - 5Fx, +C w(x) = - -Fx13 + c1X1 + 22 WE-FX22 -S X + Cy2 w(x,=0) = 0 = c=G W(xz= 0)= 0 =>C=0 w(xy = 2) = W(xz = 2) w(x1= 2) = - w(xy=2) - BF . (2L(3 +42= - FF . ( + (z - -F . (2) + c = FL2 - cz - BF(3 + 2(4 = - 5F(3 + (32 (3 = FL2 - C1 2Lc 1 = EFL + (3L 4 = FL2 + EC3 => G = 5F(2+ E . (FL - c) 2c = FL2 4 = 4FL2 =(z= F22 W(Xz= 1)= fa = W(x1 = 0 = -T im Uz-Sin (B = W(Xz =0) = 5* im GUz-Sinn b)w(x)= (3 - x +3 W(x) = 0 o=3 - x +3 - o = E - x +3 1 . 27 0 = X2 - 2x +2 3 M1 = 21-- = L = 5L2 = LILV => . (1 - E) = 0, 4226L Wmax = w(x = 0, 42264) = 0, 06415 Me Klausur 12 Aufgabe 1 50RNM AAX = AAY EA A 1 = Sin (50 %) . AAY + Cos(500). 12= 13 = -Sin130 %) SAY + COS 130%E EA · 11 = 53, 58kN Fr = 4 1 67 Fz = EA . 12 = 16 , 67RN 3 Fz = EA . 13 = -22 , 72kN 3 , 46 GGB [Fy = 0 = . (Sin (50%. 1 AY + cos150%. ) sin /50%- -sin10%SAYToS 130 %.E) sin (30 % -404 , 67 Ay = 207 kNm EA EFy= 0 => F= 26 , 03 KN Aufgabe 2 A= 20 . 40 + 60 . 15 = 1700cm2 Eg = 800 . 20 + 900 . 47,2 = 34 , 559am 1700 Iy = , (20 . 403 + 60 . 153) + 800 . (20 - 34,559)2 + 900 . (47, 5 - 34 , 589)2 = 443840cm4 Sy = 60 . 15 . (7, 5 + 40 - 34 , 559) = 11647cm3 AK berechnen EM , = 0 = D . 10-10 . 10 . 5-20 . 3 D = 56 KN c = 64 RN 64 54 34 + 4 I V A B - 56 MA = 64 . 1-10 . 1 . 0 , 5 = 59RNM MB = 56 . 6 - 10 . 6 . 3 = 156 RNm V(x = 64 - 10X1 01 011647 . (64 - 10x)dx = 231kNTi = 0, 0044384 1 V(xz) = - 56 + 10x2 Tz = 01 011647. 1 - 56 + 10x(dx = 23 , 6 kN 0, 00443846 T= 254 , 6kN a)
b)
c)
Aufgabe 3
AK berechnen
ZMg= O= 64-c-8
C=8kN
ZUq=O= G4- 8-13 -3-S+HA
Ha=t5kUM
ZFy= OF -F- B+A
A= AS RN
as
aa)
Bereich 4:
uv
Y
OL%,£5 ;ET=A
Hix) =-45 + A5x,
w"lal= $5- AS x4
wilig) = F5%q - 4b Aa? cy
wWhel= Fx EX? teynet ez
Wht, =0)=O
w'y=0)F=0 3,20
Wlhxa= O)2O =?cy=0
W (x42 5)= W (x2=8)
=?C2=0
=eg= 2488
S ¢3
whaz5)= 43:5"-%-S> =
fog = W'le,= 5) = 483,5
fpo= w'lyg= 8) =- 4/2
Bpg= 197,5-3,2= 480.
2
w'lx2=0) = 248.8 =? ¥e= Bet aRNer
ABI, ZBNme
Bereich 2: O£*%,£8 , ET=A
HOq\= 64- Sx.
we" LG )= - 64 + xo
wil) = - ba te +C3
We)=- 32x: +55 Kp 463% + Cy
_ B25? L
et
im GU2-SiNn
Ausgabe 4
Year+ Ox tc
Pe)sOFOK+C
tlo)=O 7% c=0
7(6)= 0,54 > 0S4=36at6b
c'Ix)= 2oxtb
t(o)=O 2» b=0
=? 0,s4=36a 1:36
a =Q015
=? F(x) = 0,015,
=? Alx)= 1: (0,015x)”
€
=7A-E = ##50kN/m
4
a= 4. (J Ao +f 500
2 TOS Kr)? TT + (Q01Sx*)?
Aufgabe 5
Wo = A@Dem?
Wy = +O0em®
— M:AOO _
%= “300 = 2°
B= M100 = 20
10200
Ms doo _
C2 G00 *“°
Oy = Mz40° = ro
-~, opm Ms tk
q
=> M=A40RNm
=? M=200RNm
=> MeFORN — grépter positives Voment (unten 20g oben Druk)
=
=> Mesooriim steht Negotives oment. (oben zug unten Druck)
aufgabe 2
ASO “so
33:5
2 N AsO IN SEL aso OM
9 250 7
A700, A700
Hs= ASO kU
Ngs= A400 kW
= 450-400 _ “ .
Op= re + 2380 43,9 Rb/em? Stitze , innen , oben
_ AOO | 4s0-AOS =- 3,38 z
Op=- "aR + Z3R0 138 RN/emn
Hp= 250 kENm
Ne= 325SRN
315 , 260-400 _
Op = 30 7 18:49 RN/em™
325 2s0-AOO 2 *
02> - heat agag > 42,72 BNlem Balen, onien , mite
Aufgatbe 3
A= 20-20- 19 -(8 = #6em™
Ty> Ta = &: (20-20°-18- 185) = 4 585,3 an"
N Wyte + H2-400 «10 =-5
Ca= ag + 4se53 4s95.3
N, Myl00 i954 He -A0O 4 =- 4,8
Og= 367 45953 4s9s13
N _ Myl00 «9 = 6S
Se= 367 45953
=? N=AG2 BW Drude.
Aufgatce 4
AK berechnen :
2Mg,=O= 56-C°4
c= SRN
2Fy= O= -3-AOtA
A= AR RN
2Mg,=O= -A8-6 +My
Ha= AO8 RN
a) ™ @
Bereich O£X,26
Ml) = - 408+ ABx,
EL-w “lx,) = 408 - 18x,
ET- w' (xa) = 08x, - Sx ea
EL: wly)= suxt- 3x2 tcqxtce
RB:
Wly=0)=O =? C220
wly=0)=O =? c4=O0
=? wlx4)= = (s4x47-3%>)
A296 NF
b) wliy=6)= Ex
2
¢) fo = w'liy= 6)= BERN im v2-Sinn
= = A498 BNen®
= W'(x,=0)= ~ A0b Ne”
Ter wil ex
2
Afg = Sat RNe -(- AAD R BNer
EL ex
Bereich OLx, £4
MIx:)=- 408+ AB-(64+¥2)- AOK,
= 8x2
ELT -w'lx,)= - Bx.
ET: w'lr,) = - 4 xo" eq
EL: wlx)= -3x,* +CyXK + C2
RQ:
wlxy=6)= wix2=0)
£296 = Co
whys t=O => G=-3,8
2 wlia)= Zo (- 3%" AA, B49 +226 )
im 02 - Sinn
\_ 443 8 Ne?
d) fox wilky> 2)= ~ SABRNO S45: 8kNO eg Go2- Sinn
eL
aufgalbe 5
du= 6am
do = z
2 MS
Nig Vez
u
<
Ve
Ty= 4.40-25° = 13024 cm“
Y~ Ar -
So = 40-5 (12,5 - 2:5.) = 500cms
Su = 10-40 -(A2,5- 5) = 50cm
_ 5SOoV _ SON
Yo= “43024 Vo = A302
s00V. aA _ 25OV .&
302A. 2 A024 3
=> aA=6cm
Aufgalbe 6
Te 2 “Svcd dx
T= % -0,6- A> = Q,05m" 3
§ = 0,6: 025° 0,345 = Qosce5m
AK berechnen +
BMg=O= - A104 50-942010°5
A=AYO RN
EFy=O= AO - 56-200 +6
B= AAORYD
VOg) = AYO - 20x,
N(x) #40 + 20x,
0.08625 .
2 8
v= G05 (s (240-20, )dx, + J (- Mot 2082 Axe )
= A,A25 - (AAO +40)
= AGS, 2 RN
aAufgatbe 2
Druck posihv
Op =2S5N/mm = 2,5 kNian™
. 2
sinla) = 7o
a = 53,A3°
Tei TC: 20% = #854 ern!
= Yy-s00 Hz -AOO
-1)5= “a qasy 40° C0S(93,43")
2,5 = 0, A0A86- My - 0,04639-M2
0 = Hy-40019.co5(307)+ MEAZE JQ. sin (20°)
6= 0,44 027%. My + 0,06366- He
GTR liefert + My=-4O,68kNm 7 Ue= 48,49 Rm
aufgabe 3
© = AS Nicm®
A=A00cm”
ASRNIM
Lid
K Lt x
hovast Forse
Mmox= OF6L:$ -A9-§> eC
ic
ale
Ty= lead’ - di) = % A5i"
I .asais _ 45 4,3
W=¢ Asa =e ai
hi
2
N00 = Te: (2 44)? - TW LE)*
Ai= 6,5A44%cm
Aufgabe 4 A= 8. 12 = 96cm2 w = 5 . 8 . 122 = 192cm3 AK berechnen : [MA = 0 = B . 4 - q . 5, 5 . 2, 75 B = 3,781q A = 1 ,7199 1,7199 1,5q 1 , 124q - + V I M - 2)281q 1/ 477q 1 / 4779 . 100 1 , 5 = 192 => q= 1 , 95RN/M 0 . 8 = 1 , 5 . 2 ,2819 = q = 22, 45RN Aufgabe s a) N = F M 36 + W = 5 . 40 . 402 = 10667ca 3 F 36 . 100 0z = - 1600 + 10667 => F = 540kN 200 M . 100 b) -z = - 1600 t 10667 => M = 13 , 33kNm M(x) = x2 13 , 33 = x2 x = 3, 651 = X = 6 - 3, 651 = 2 , 349M 200 + 36. 100 c 0,1 - dZ 5 . b3 => d 49cm aufgaibe 6
_ Al fA nu AB 403. 238%, 2) _ BUSS.
Woy lio)= EE (z-40 ~ e400 + 4 4o*) = eL
Wer = Wee * for 4
tadew'le)= Ee (4x74 lx)
=\)! = 4 z= ue
ple) =w'(L) EC guel) oe
° &. AWSO ,
Wore Er (ee4a 6) + er 4
= 2-4
= 5760-2-4
= AAS2O
eL
Woe Be dh 1)
= 23213336
eL
=) B= BABSO*AMSZO — 1408, 8RN
33333
Aufgae 2
I= z “06 0,8? = 0,0256 m4
S = 0,45: 0,6: (0,4 - 0,025) =0,02325m*
Mp= 400-3-20-3-1S= 240 kNm
Vp= 400 - 20:°3= YORN
OF ee “(0,4- 0,48)
= 2 050 RN/m = 2,05 Nimmn*
— 4O: 002925.
Ue = Cy0256- 016
= 746.2 kN/m*
= Hor? AOCOY = 06,0362 Niro
Aufe gabe 3
F, = 1200 kw
ZMea=OF Fo =7F2=0
My => F225 + & Mes
~1200 , fz, + My AS =0
45° 45 ~ = UPA
On =
= 1200 4 AS
oO ot Be az.gA (-A200- 225+ Fy A,25)
Fy= #32 RN
Spammongsn linia,
y durch My > bei Ha nicht toga > Ha=0
“rE
Aufoobe 4
0) AK berechnen
a
ZMp=O= -A-C+ 20-6°3° 9-6
A= 20kN
ZF) =0= 20-20°6-4 +B
B=4O RN
210
4o
b) OAS = 5° ey
V = 20kN
4o
c) 0,45=2,5° 15-(20#x)
X= 6,64 = Fem
a) v(x)= 20- x: x-3
=20- Sy?
-30 = 20- 5x?
Ks SUF
Rereich: 5,4FF 2x56
e) T= 6-45-2399 = 24604cm"
$= AS-#-AO = A050em?
Ve = AEBS = 4907 RU /em
2
M703 = Ww 5
Vy 4:27 RN
a) 70 20
NX A M
+
45
b) EI=A
M(x)= - 30 + 30%- 5x?
w'lx)= 5x? - 30x +20
wile) = $y - 15x74 30% Cy
why) = Bx - SHS eK tle
wlo)=O =7c,=0
wl6)=O =7c,=0
=? w(x) =< (éx' - 5+ sx’)
c) EIwl3)= 33,45
dl) tasEtw!(0)= 0
Yor ELw'lé)= 0
e) 40 0
NE
Klausur 17 Aufgabe 1 AK berechnen : [Ma = 0= B. 10 - 10 . 14,2 . 7 , 1 B= 100,82kN A= 41 , 18KN al 88, 2 - M + 84 , 8 M. 100 b) = 5 . 30 . 602 = 0 ,4 M= 72 kNM Bereich 1 : 0x110 M(x) = 41 , 18x - Sx2 =72 X1= 2 , 519 X + = 5 ,717 M(X) = 41, 18x - Sx2 = - 72 Xz = 9 , 718 Bereich 2 : 02X2[4 , 2 M(x)= - 5x2 = 724 M(x)+ 5x2 = -72 xy = 3,79 (M 72kNm = 2,519x 5, 717 -> 9 ,718 <X 10 , 41 Aufgabe Aufgolbe2
a) A= 20-307 908cm*
OM 900 = 2-30'S5 + 20-x
x =3emn
b) Ig= i: 30-30° = 63500cm"
Ty = 230 -20°- 2-43,5-2.0) = 49500em!4
Fy. 4080 - 6,333
Iq 678%
> Verringerung um 26,77.
245% oye tT AaSta
c) T2457 7VE TSS
Vay = 3° T 30-30 = 6adem". &
+S - t:r'b
tHE 7 EE
Tz 49500 cm"
$= 5°30-22,5 + A0-3-5 = 2025em?
7 Flachen aufteilen
Vz 249500 -3 = #3,33em?- t
205
Vr _ 43:33 . 0, 4222
Vo. 600
2 Verringesung om 8448 7/-
Aufgate 3
a) ate Seb
AA, a4= A
2, 43 = 0-0,6
Fy, Fy = SE“ = 0,3333EA4
2
Fasfy = MEE = O24EAA
2Fy=0= -50-50 + 2- O;2YEAa- 06 + 2- 0,3333 EAa
A= 0435
EA
=? Fy =Fy= 34,92 RN
o> Foe F225, 44 RN
b) 3422
+
AGA
+
Aufgolbe 8
{Ld
a”.”~(“—~CM
ME 3 A/2
8
- Squ"
a) Yrmox™ seyet
welt
2a25=2,04 => Errahung von w om AO0F7-
4 = & £_ Bel?
b) oF Minox 9-3 + PG = Ze
ov?
2 A227 = 044 > Erhéhung von g om 47
4
c) w oa
d= 4,2"
aA = 12 => Erhahung von d om 207
2
d) ons
d?= 4,2"
d= A129 => Errah ng von d om 12,597
e) ong
) d= 4,20
o~ aan > 0,93333 => Vervingprong von o UM A6\/-
f) wes
d) d= ARIA
Aa? _ iy = m
vy = 1,2 > Erne von w om t
’ ung 27.57
Klausur 18 Aufgabe 1 a) AL & > B ↑98 EFy= 0= 90 - A. 0 ,6 A= 150 KN Druck EFx= 0 = -150 . 0, 8 + B B = 120kN Zug 0 ErA [Fy = 0 = -40 + 150 . 0.6 - C - 0 , 6 2 = 83 , 33 kN Zug EFx = 0 = 150 . 0. 8 + 83 , 33 . 0, 8 - D D = 186 , 67 RN Druck => max Fzug= 120KN => max FDruck= 186, 7 RN 186 , 7 b) 10= π . r2 =>V = 2 , 4 CM 120 20 = Tr2 => V= 1 , 38 CM ca = A Al = 120. 200. 4 = 0 , 25cm 21000 .T . 2, 42 Aufgabe Aufgabez 51 = 840kN Z 1 = 4 a) AL = 84020 . 400 = 0,8 cm 0 , 8 b) sp = sin (30% AP = 1/ 6 CM 2 12 = sin (15%. 1 , 6 = 0, 414 CM 13 = 0 14 = 0, 414CM A 5 = 0 , 8cm S2 = 01414 . 21000 . 20 = 434 , 7kN Zug +Streckung400 Sy = 434, 7RN Druck Sz = 0 55 = 0, 8 · 21000. 20 = 840 KN Druck-Stauchung 400 d) EFy = 0 = - F + 840 . sin (30) . 2 + 434 , 7. sin (159) . 2 F= 1065kN Aufgabe 8 Y = V5 I , b Ronstant M= 93.h = 9 M(x) = * . x . E . -x q= 4 = Ex= h I qx3 64 IV(x) = Ex . x E I &x 2 V(52)= (L) = 8 V(54) = 4 . (5) = 4 M(5L)=, M(EL) = 4922 81 a) VB=Va Sa = b - Eh . Th = S1 = bn => 8 Sa =be SB = b. E h . h = SB= bh2 => Sp= 2 ↳ 2 D 85A = SB SB = ESA EB= b) VB= -97 V= Eq VB = EVc PVB =V Sc = SB - = 4 Aufgabe 3
er=4
Mix)= 4
wi(x)=-4
wilx) = -Mx + C4
w (x)= - SMX CA¥+ Co
W(0)=O =?¢2=O
w(8)= O =7¢,= 4M
=> wl_)=- 5 My? 4xM
wy) =-SM-4244-4M =3N
wl-a)= - 84
-@H=-BN-07-4o
a= A,653m
Klausur 21 Aufgabe 1 A = = v(X) - O A(X) r(x) = mx+b m= 0 ,24-0, 50 = - 0 , 04 8 - 0 r(x) = - 0 ,04x + 0, 56 A(x) = π . (E)- 0 , 04x + 0,56))2 800 1200 = 0, 36cm a = 20 . Sπ . (1- 0,04x + 56)/2 O Aufgabez Feder A = F2 F = 11 . R 11= Fz = 2A . k 6 F = 5 A1 . k Fy = 511 . k Fs = E11 . R F = 11 . R [Mo = 0= 4600 - RA . (6 + E . 3 + 5 - 1) . 2 RA1 = 300 Fz= E . 300 = 150kN 300 - 1 = 10000 = 0,03m y = tan - 10, 3 = 0 , 286 Aufgabe 11 = Ay . 0 , 8 + AX . 0 , 6 = 7 , 5 12= 1y . 08 - AX . 0 , 6 = -3 => AX= 8 ,75mm Ay = 2 , 81mm Aufgabes Aufgabe i = E : b E =E V(X) = 94 . x . E = 9x V(L)= # man z L V(L)= bl 2 SB= b . E . = - 2 Sa = b . 4 . 3 = 30h32 TA E - 32 = 27 [B I 1 · 4 18 Aufgabe 9 a) WIE) = 0 b) AK berechnen : EMB= 0 = A . L - M-ZM -M A = 4M L M M - - M t + M e C EI = 1 M(x)= M - 4x w"(X) = - M+ 1MX L M(x) = - x + M EI = 1 w"(x) = - M +x W(x) = - Mx + 2 Ex3 +4 w(x) =- X+Ex + (1X + 22 w(0) = 0 => c= 0 w(E) = 0 =>1 =MML w(x) = E . (3X- Ex + EX7) w()= I w(π) = 0 Avfgace AO
AAC = AA
r
4
a) Wmax ~ ct
A
Age = 0683 =? Verringerung, 3A 7
A
b) Cmox= Wo? Omax™~ a ( ded 22 bore sich rows)
A
wae = 734 =? Verringerung 24,97
u
Co —_—
) Wma, 7a
3
be LY ay Lye WIL?
i ly =4f%L =) Erhshung 43,67-
L
a) omax= =
L :
wt = key Lys APL
al Lya=4334L => Echsheng 13, A+.
2) Omox= ‘ad = 0,444 =? Verringerung 24,4 7
f) ware 334% = 4,644 => €Erhdhung 64,17
Avfgabe |
A
nyla)= Be (Sx?- GLE 424
do A. 93 _ 243,333
- AO
Yea- er 24 = er
wile) = A+ (Sx? x45)
mM
Your? ax (3g 07-0456)
= 2M
€L
wy id= fe. (-x4+QL)
forma = eq (0428)
= 4M
€
Aufgolbe 5
a) AK berecinnen
BFy=O= - 240+ 95,5-2428
A=24 ARN
b) Mg= 2411 -F- 40-7-3,5=-763 RIM > Hox
Mgg = 244° 12+ 95,9-5-10-12- 6 =48,F bm > Mar,
c) 60*=307+h"
h = 54,96cm
= 233806 _ 3
Wom a sage 35"
y = 233806 = 6350cm>
% -5A%6
max o> B&4CS =0.565 RMVer* Lin & coer)
max og = WHA? = 07574 Ru lem? (in Feldmitte 2 unter )
+50
Aufgolbe 6
A= 40: 60= 2400 cm*
T=" 10-60°= 720000cm*
Th
Onz
= ig 40°60 = 320000em"
_ 2400 4+ 120-400 2 s0
2400 720000
GTR Uefert: 2 AOem
%
_ 2400 , 880-460 .
2400 * B20000 YY =O
GTR Uefert: y= 3, Hom
P,
(3.6410)
B(0140)
as 10 = 245
364
p=40
B= 175ytA0
Aufgatce ¢
AK berechnen
ZH =O= B:8-6:8-9°5°8
B= Bev
Vila -8 4 $e-x
= -3t3x?
T= 4: 46?-24 = 8422 em’
= 9 -214-4= 468 cm?
VXI=O =? 4,613
8
=~ 01000768 Fy 9 3.2
006008192 ds’ 84 gx')dx
=234 RN
2, Az
T= 3 [a2-423- 3-B-4)- 2: 9 -(45-6)*-2- 8 - (40,5-6)” = 9F2em!
T= sce 8 = 4,39 kN /emn™
Aufgabe 9 al e M + M b) w(x = E) = 0 c) M(x) = M EI= 1 w"(X)= - M w((x) = - Mx +21 w(x) = - Ex2 +crX + Cz w(0) = 0 = (y = 0 w(E) = 0 => 1 = ELM => w(x)=7 X+ 4xM) I w(x=E)= + Aufgabe 10 F= 100 X =18 1 = 18 w(10) = 9213t a = Bb = F= 150 X = 8 W(8)= 149337 L = 18 a = 12 b= 6 F= B x = 8 w(8)= 118,52B4 1 = 18 a = 8 b= 10 0 = - 118, 52B + 9213 + 14933 B = 9213 + 14933 = 203 , 7 118,52 c = 37,2kN Avfgabe 3
Tox = 215 RW/cm?
Ta
-V:S
5=.=
38° Tp
54> 56-3 3-3: 45-4: A- 015-2 =48,Sern5
6.7 2-3:45= Tem’
by = 3cm
ba= den
Ty BGG - 3-822-2- 4.-23) - 3-(6- 418)". 2 = 340,67 em"
3ig= V4RS => v= 73,75RN
340, 643
35-22 => v= 88/32 RN
340, 64°72,
Vyue™ F378 27 A
340.6% Gq = AS RNicem je Schweifnont
Aufgave 4
a) AK berechnery
ZFy= O= GO-AG-AO+ Ay
Ay= 400 RN
€Uq=0= Mp + 60 -AO~- 46-40-S
Ha= 200 Rum
Umax = 442,5R0m
b) Mx)= - 200+ A00x - Bx?
er=4
W"'(x) = 200- AOO« + 8x”
wilx) = 200x- Sor +!x? +,
w (x) = A0b1*~ $2x° + Ex" + CAKxtCe
wlo)=O0 %,=0
w'lo)=0) »c,=0
a A
w(40) = (400: 40% - $2.40? + 5 AO") - ee =O
° * SAm x
Wmox= Bb6eNm?
er
Aufgobe 5
a) dA= dx: (0,6- 06x?)
“
Tr Jx?- 0:6-(A- x?) dx =0,46m"
4
») Aso =H ole Wéhe~ 4
o a
Ww
424
AB hat
ha = A2a>
=? Vergréperung, 22,447-
Klausur 19 Aufgabe 1 - Op = 10 + M . 10 = 15 = M= 4, 64kNm 44 Op = 120 t M+ 100 = 15 => M = 16, 15kNM 27 153 + 0z = - 120 + 4.. 100 = 25 => M . = 45 , 05kNm 27 153 -z = - 120 + M . 100 = 25 = M + = 12, 96kNmt 27 44 - 4 , 64 kNm > M 12, 96 KNM Aufgabez F = 4 . (AcEc + AgEs) -g = E . Es 42 = E . 21000 E = 0 , 002 Fc = EF => F = E . AcEc = 0 , 002 . 3000 . (5000 - As) Fs = 4 F => Fs = E . As Es = 0 , 002 . 21000.As 0, 002 . 21000.Asi = 5 = 0 , 002 . 3000 . (5000 - As) => As= 227cm2 => Fc= 28638kN => F = 38180kN Fs =A .As Aufgabe Aufgolse
a) AK berechnen
BFy =O= -270 + £06,75-2 424
A=28,25 RN
b) Mg= 28:25-8- 40-8-4=-34 RDM > Umax. oben 2g, oNIeN ‘Droce
Mg = 23:25: 43,5 +406,45- 5,5 — A0- 13,5 6,45 =543 RUM > Umax+ coer Drvde, unin 2vg
c) 50*=257+h™
h=43,3cm
Wo= Aes = F8A2cm>
4.43;
3
Wy = 442754 2 3906em?
2% 45.3
QU-AOO _ 244 RNiceme Lin G oA)
BI06
MOx O2 = sage = AAF RNIcm? (in Feldmitte 2 unten)
MX Sp=
Klausur 1 Aufgabe 1 5.333 a) 11 = 6, 6669 = 0 ,81 1 2 = 0, 6 A N = AL . EA L Fr = 0,85EA = 0,121 E F = 01 61 . EA = 0 ,121 · EA 5 &EMA = 0 = - 200 . 2 + 0, 6 . 0 ,121 · EA . 4 + 0,8 . 0, 121 · EA . 4 0 = - 400 + 0, 6721EA 1 = 595 EA -> F = Fz = 71 , 4kN b) t 7 D 100 · - 100 10O N W M Aufgabe 2 a) NEMB =0 = C . 6 - 1 . 8 . 4 C = 5, 333kN [Fy = 0 = 5, 333 + Ay - 1 . 9 ,5 Ay = 4 , 167kN ↑(Ma=0 = Ma + 5,333 . 7,5 - 1 . 9 , 5 . 4 ,75 Ma = 5 , 128 kNM 4,167 5, 128 2 4 , 167 = 7, 5 I X 7, 5 - - - V - M x = 4 , 167 - - 3 ,333 Mmax = - 5,128 + 8, 68 = 3, 552 kNM b) A= 20 . 40 + 20 . 60 = 2000cm2 Es = 800 . 20 + 1200. 50 = 38cm 2000 Iy = (20 . 403 + 60 . 20% + 800 . (38 - 20)2 + 1200 . (38 - 50)2 = 578700cm" ↓ = 578700 = 26305 cm3 O 22 Wu = 57870 = 15228cm3 # O = W 5 , 128 . 100 of = = 0 , 01949kN/cm2 Punkt A oben 26305 3 , 552 . 100 Of = 15228 => 0 , 02333kN/m2 Feld unter Op = 5 , 128 . 100 = 0, 03367 kN/cm2 Punkt A unter 15228 2RN/m2 Ch 9zu) I 0 , 03367kN/cm2 = 59 , 4 KN/m 0,5RN/cm2 9Zu = = 21 , 4 RN/m 0 , 02333RN/cm2 9min (59 , 4 ; 21 , 4) -> 9zu) = 21 , 4 RN/m Aufgobe 5
ch Aa et _ 4c)?
a) Ty= 4 7282 - £on-c2. (0 3x )
= Rect _ grt
8 on
or F-&) = ouoeert X/
b+ L_,*
_————
Sqt"
Wena 33MEL
oo) alter Wert = Never Wert
StL Sql tren) 0.5
yereEL 3eueL t '
X= ‘
48 =u" AT
O84OOL =L,
=7 Ly muss um AS,947% verringert werden
bb) Sg". SglY = Qo.
asy-E-b-hi- 2 32 Eph
Agi" = tov
64 Eb?
4 Sql
64Ebh> = -32E bh
a <=
oy ahs
3y-2hn?
wy =>
32 40h?
M +
ha = 4,026
=> h moss UM 42,67. erndht werden
C) Pas resultierende Moment hat eine Neigong von 4:3 Chorizontal av verbal).
Die maximolen Spannungen treten senkrecht daw aufen am Querschnitt auf,
Hz {40?430? =50 kW/m
- oO
My = M- costet) tan’ *(33)
40 = S0-cost«) l= 26,97"
l= 3687° > 90° 36,87°=53,43°
-4 4O
cos” * 35 = 36,84°
Klausur 3 Aufgabe 1 a) 3 = 1 -> a=E + E= E = 0 , 01 . 0, 8 + 0, 012 - 0 1 6 = 0, 00405 32 + 2.252 E = 0 , 01 = 0 , 00333 E =0, 01 . 0, 6-0. 012 . 0 1 8 = -0 , 00720 5 Stabkräfte : Fr = 0 , 00405 . 30000 = 121 &N Z F = 0, 00333 . 30000 = 100 kN Z Fz= -0, 00720 . 30000 = 21 , 6 KN D Gleichgewicht : [Fx= 0 = H - 121 . 0 , 6 -21 , 6 . 0 . 8 H = 90, 24 KN [Fy = 0 = - V + 121 . 0 , 8 + 100 - 21 , 6 . 0 , 6 V = 184 , 32 kN b) y =ax+ bx +C y= 2ax +b Ebloloag -00os => b(x) = - 0 , 009x2 + 0, 18 x b(2 , 5) = 0 , 39375 + 3-2 . 0 , 39375 = 2 , 2125 b17 , 5) = 0 , 84375 -> 3 - 2 . 0 ,84375 = 1 , 3125 AL = 5 ↑ ( 2G + 80 ( = 0 , 008566 m = 8 , 566mm 30000 1 , 3125 2, 2125 Aufgaioe 2
AK berechnen:
17Z. Maz O= B-S- A405. 2,5 -600-5- 60-44 50-4
a)
b)
Br 950rW =A
&o 600
r ry] sO
D D
350
uw
C= atW
dlz
A= 20-60= A200cm?
W= 4: 20-60*= 42c00cm?
Drudespannung
= ee Oe = 2AF RNiem™
__52 4 23715-4060
F2= "M00 12.000
G,
= 4.94 kNlem?
Spmax= 2AF RNIcm?
Bugsponnong
So + BAS -AOO
50
Hmox™ 350:2,5-5 -200
= 237,5 kWm
0 be \re0 m0 [42>
ar
23nS
350
(Coberhatls Punt A; auBen)
(in Feldmitie AG; oben)
Cams” Garo * azeoo ~ 2102 RN/cm?
schubspannung +
T= 45: 22S = 0.4395 RWlem*
Aufgabe 5 5. 1 3 H2 F 64 g F T= E. = +3 I 16 BHifB I= 4 . B . H3 b = B v = 3 .# . (+ ) = B. 32 32 5 . 2 MY . z I F218 . # =3 Fz↑B . H3 oF F E . B - H3 z = H SMy = 0 = -E Ein0 = - MA = FL - 5. 3 V . == T · Konstante . S - S quadratisch - [ quadratisch-D 5 . 4 V . S T= I . b = Konstante . V -V Konstant -> [ konstant 5 . 5 O = My · z = Konstante . z E Linear -> o linear Iy 5. 6 Nur der Verlauf der Spannung 2 verändert sich , weil die Querkraft nicht mehr Konstant sondern linear verläuft . Klausur 2 Aufgabe 1 SO a) 30 40 D D b) Al= . (30+ 50) . 4. + 40 . 3-ea x = E (160 + 240) EAAL = 400 kNM Aufgabez F = 11 . R 11 = 12 Fz = 2A . k 6 - F = 5 A1 . k Fy = 511 . k Fs = E11 . R F = 11 . R [Mo = 0 = 9200 - A . (6 + E . 3 + 5 - 1) . 2R RA1 = 600 => F1=600RN Aufgabe al tan(0, 231 %= = DB = 0 , 00806M tan(0 , 2319= S = 0, 02016 -1 = 0 , 00806 . = 0, 01677 m 12 = 0, 02016. = 0, 01037 m Fr = 0. 01677Et - 100000 = 186 , 1 kN T3 Or ·Z0137EA . 100000 = 355, 7kN Fz = 134 b) [Fx= 0 = Ax - 186 , 1. - 355, 7 . F Ax = 408kN Aufgabe b(x) = ax+bx+ C b(0) = 0 = c= 0 b(0) = 0 =>b = 0 b(20) = 10 = a = To = D(x)= x A = 40 . 10-2. Fox' dx = 266, 67 cm2 0 Iy = 11429 - 266 , 67 . (0-6) : = 1829cm" Aufgabe Aufgolbe 5
uv
ore
re
"
xIl>
els
x
n
a
Mix)= 3.x 3-
HL4L) = 4: (Gu) 5 = a
(80) i) 162
- abe at
HiL) = 6b 6
a
a.
Soa = a 4. 2 = 43,5
oe ap =
462
Aufgatse 6
n
HU) =215x-* 3° 9% = 3x3 “ee 1
2)5x=h
ce 2oo H:AOS _
G2=~ 3400 tT ~200 6
H= Sktum
Mix)=B =? x= 2,648
=? 4- 2,648 = 4;322m von unten
Aufgolbe t
A= 2: 40-30: 4 = 600cm*
Ty =tH, -4O- 30° + 600 2(32)* =180000 em4
Ty =24,- 20°-60 + 2.600 +(22)* =80000 em"
o= 30. 400 AS - AGO +490 . an
430000 80000
=> 4,25 RNlom?
= A215 RNlem? 2ug
Klausur 4 Aufgabe 1 a) [Fy = 0 = 0 , 2 F + 0 . 852 - 0 ,651 - 0 , F = 0 , 852 - 0 ,65 - [Fy = 0 = - F + 0 , 652 + 0, 851 F = 0 , 6 52 + 0 ,851 si = -F - 452 -> - 0 , 2F = 0, 852 - 0 , 6 . (F - 452) 52 = 0 , 44 F S1 = 0 , 92F = 0, 92F = 20 -> F= 434 , 8kN 1 20 0 = 01 44F = 20 -> F = 454 , 5RN FzuL = min(434 , 8 ; 454 , 5) = 434 , 8 kN b) · Definiere AH und AV als Unbekannte · Drücke Längenänderung , damit die Dehnung und Stabkräfte als Funktion von Ap und Ar aus · Gleichgewicht in Knoten -> AH und Ar als Funktion von F · Einsetzen in Stabkräfte Weiter wie bei al Avfgobe 2
a) AK berechnen:
IZM =O = - 820-7 450-55 4250-44 5-4-2 tAx-4
Ay = ZA,3RN = Bx
Py =320 RN = By
a
2N = O =N+t 0,6-234,3+ 08-320
=- 394,8 BN = 394,8RN D
35 Bs
2013 4o 12,
AN EE VANS N aN IN M
35 35
3348
3948
b) oaths a
DrwdRspannung :
aaa 35-AOO _ . .
Tomax = ans? aaeo 7 THES RN lom® (stitze ,auBen, unmiteloar unter Port @)
Zogspo.nnung :
Oz,max = O* Ace = 646 RN lem™ (Kragarm , oben, unmitielbar links von B)
Avfgabe 3
a) AK berechnen:
2H ge O= B-AO~ 10-13-69
B= 84,5RN
ZFy=O = B45- 20-1341
Az45,5 RN
45
os
Hmoxr 4-455 °455
2103,5 RUM
b) ET=A
Bereich 43 Of x40 Bereich 2: O£%263
Mu) = 4515 x4~ 5a HUd= -5x2
Ws 5x42 = 45,5x.4 witlel= 5x2
w'lx) = Exp - SEEK, 4 c4 w'l)= $x? +c,
wlx) = fat SEE Pa cxter Wind = Ext texte,
W(O)=O =? cQ=0
WUIO)EO =? c= 344,67 W(3)=O =? 3eg4Cy= - 33,95
FO =? cy= 34d,
-W'[xy210) = w'lxg=3) =? ¢g= 22467
=? Cys- 698,25
A
we2(;5°0%4 224,67-0- 688,35) = 69875 4
er
al
Klausur 5 Aufgabe 1 al 10RN/m in ~ IWBq W - iIWBB "B 10 . / . 102 - 13. .H+W BG (10) = EI I 24750 ET- WBB = B.103 3EI O = WBq-WBB 24758 = 1000B EI 3EF B = 7 4 , 25RN EFy = 0 = A + 74 , 25 - 10 . 13 A = 55 , 75 102, 5 45 - - M Mmax = - 102 , 5 + 55,752 = 52 , 9RM + 52 ,9 X 5, 58m x Aufgabe 2 a) x = Yv(x) · EA(X) N1 = 100 Nz= 400 A(x) = 0, 5. . EXx . 2 x =E 100 +400 · E . EXX = (1131 + 1875). = 3006 E b) Af = 0 , 5 . E . F . 2 = 0 , 25 Az = 0 , 5 . 4 . 5 . 2 = 0 , 433 3= 100 . 2 + 40033 : 2 E . 0,25 = 2648 E Aufgobe 3
a=
OLAz 4:0,2 wy a
ALO=A
ALC+ 4-0/6
Fo= 0,8A-R > 240RN
Fy= 4a-k > 200kN
Fe= O6A-R 9 “po kN
ZFY=O= 0,8 AR-O8 + Ae + O/6Ak 04-600
07 2Ak-600
= 202
~"R
EMp_=O= 100-25 - 300 -2,5-240-0,8-S+A8O-0,6°5+M
H= 920 RNM
Aufgobe 4
a) AK berechnen :
BMy= OF -20-24- 10,5 4-18 + [00-8
C= 8,06 RN
ZFy=O= A+ F2,064 [00 - 10-24
A= 34.94 RN
S454
34194 30 wet 4s
BN X yo v aA A M
&eob 4E, 06 5402 Four
2
b) A=4932em
zor 40-86-4O- 2-11-10.
ca 4992
55440) = 36,24em vu
o
4
I-4 .20-80° - 27s +5600 «(Yo - 36,84) = 200T -(65~ 36,84)
= 2528636 cm
Whe 2829630 — cesea cm?
° 43,46
2829630 _ 3
= S25 = 6 FE38em
Wu 36:84 “
op= rr =O,424 kNicem* oben; 4, 24m Unes von C
oy = FANFWO = 0,403 eNlem?
68638
op =e 100 2 oO, YokNicem™ open; &
58 s8F
ows
e) TFT
V=54,94bN
b= 30cm oe
$= 70-45-25, 66- 1 Aot- (H+ 28,16 ) = 29263em®
v= muss = 0,087 ebfem™
250 2F:A00
-+ on = => F525 kN
Os sag” saa 7h
2290 4 $5F-A0S 2735 =? F=4S2RN
8446 AASO
Aufgoe 3
Fe
AL=—=— dug postu «= U2 +
Ft OM + + Hy 0/0045 - QD = 36 rad l= 4
Fpl - 4M ~ py 0,0020 - A000= 2
Fai Om +4, -Yy
Ey= 400 - (-44 3,64 2) = 460pN
Fp= 400: (-4~ 3,6) = - #60 kN
Fp= 400 -(-44+3,6-2)7=-240 kN
ZHag>O= Bf, +160-16-240-(6 => Pp =ACORN
Zap = 249-40-€- 100 + 160-10 => Pa=H4ookN)
ZF = -IG0+ #604210 ~ YOO-160-F, => Py=Z2PRN
Aufgobe 4
ve Vg Vn = Atoscherbroft
vez WS
T
AK berechnen
E Maz O=- 400.264 C-10
C* £00k
A~%00RN
300
v
[=|
Aco
Schhubfluss *
v=300
T= 83604 2-75 - 1,6°- 20 + 32° 0,8 - 16,6)" 432° ( 32,4- 16,6)"
= 24354 cm"
§ = 416-20 - AS, 8 = 505, bern?
V,,= 300-5056 _
LH3SA 612283 RN/em
2
6 ,2289= \Ws- 25
Vs = 47,86 RN
Vgc = 120-0518 29 095
L43sa 10463 RNlcm
210763 = \s - =
Vs = 54,94 RN
Aufgabe 5 ↓F WBF IWAB ~ B F- 13 . 5 . 8(1 +5- 8) = # . 87,037 WBF = GEI B . 8 . 10 . 8 . (1 + 1 - )= . 118 , 518 WBB = GEI WBF = WBB F El 87, 037= 118 , 518 B = 0 ,7344F [MA= 0 = 0 , 7344 F . 8 - F - B + C - 18 c = 0, 3958F EFy = 0 = A = - 0 , 1302F 0 , 6042 F + - 0, 1302F ossof 1,042 F - t 1 , 979 F Aufgabe 6 3 Iy = 2 . 1 , 54 . a + 0 ,7592(5a - a) + 0, 75a2. (a+ 5a - a)2 = 9436 Iz = 4 · 10,75ala + 0, 75 a . (3. 0 ,73a-0,75a) + 0 , 75a2. (0 ,75 a + 5 - 0,75 a - 0 , 75 a) 2 36 = a