Antenna Theory and Random Signals, Formulas and forms for Electrical Engineering. New York Institute of Technology (NY)
gmajumda
gmajumda

Antenna Theory and Random Signals, Formulas and forms for Electrical Engineering. New York Institute of Technology (NY)

7 pages
99Number of visits
Description
Comprehensive idea about radiation pattern and random signals can be obtained.
20 points
Download points needed to download
this document
Download the document
Preview3 pages / 7
This is only a preview
3 shown on 7 pages
Download the document
This is only a preview
3 shown on 7 pages
Download the document
This is only a preview
3 shown on 7 pages
Download the document
This is only a preview
3 shown on 7 pages
Download the document

Antenna Fundamentals

( )

( )

( )

[ ]

[ ]

[ ] [ ] ˆ ˆ D D R 4

- 1 - 1 e e P P 16.

ˆ ˆ 4

D - 1 e A 15.

4

D A 14.

1 - SWR 1 SWR ˆ and

ˆ 1

ˆ 1 SWR 13

Z Z Z- Z

ˆ 12.

- 1 e e 11.

D e P U 4

e G 10.

P e P 9.

P

, U 4 G 8.

A 4

D and P U 4

D 7.

P

, U 4 D 6.

ˆ ˆ PLF 5.

d d sin ) ,( U P 4.

E E 2 1 Wr , U3.

E E 2 1 â W 2.

E

â E

â - ) , (r, Ĥ

E â E â ) , (r, E 1.

2 rt0r0t

2 2

r 2

tcdrcdt t

r

2 rt

2

0 2

cdem

2

0em

0L

0L

2 cdt

0t rad

max t0

int rad

in g

2 em

0 rad

max 0

rad g

2 rt

0

2

0 rad

2 2 av

2

2 2 rav

ρ•ρ 

  π λ

ΓΓ=

ρ•ρ 

  

π λ

Γ=

 

  

π λ

=

+ =Γ

Γ−

Γ+ =

+ =Γ

Γ=

= 

  

 π =

=

φθπ =

λ

π =

π =

φθπ =

ρ•ρ=

∫ φθθφθ∫=

 

  +

η ==φθ

 

  +

η =

η +

η =φθ

+=φθ

ππ

φθ

φθ

θ φ

φ θ

φφθθ

Array Theory

( )[ ]

( )[ ]

sin sin dk and cos sin dk

2 sin

2 N

sin

N 1

2

sin

2 Msin

M 1 AF :ArrayPlanar 6.

cos dk 2 1 u

u 1 -n 2 cos a AF

u 1 -n 2 cos a AF

:ArrayLinear uniformNon 5.

array) endfire odyard(Hansen Wo dk N 2 1.789 D

array) endfire(ordinary dk N 2 D

array) (broadside dk N D 4.

N

kd - :array endfire dyardHansen Woo 3.

cos â sin sin â cos sin â â cos â sin â - â

sin â cos â â 2.

â â cos and cos kd where

2 sin

2 Nsin

N 1 AF 1.

yyyxxx

y

y

x

x

1M

1n n12M

M

1n n2M

0

0

0

zyxr

yx

yx

rarrayN

β+φθ=Ψβ+φθ=Ψ     

    

 

  

 Ψ

 

  

 Ψ

   

   

  

   Ψ

  

   Ψ

=

θ=

=

=

  

   π

=

π =

π =

  

   π+=β

θ+φθ+φθ=

φ+φ=

φ+φ=

•=γβ+γ=Ψ   

   Ψ

  

   Ψ

=

∑ +

= +

=

φ

ρ

Pascal’s Triangle

Tschebyscheff Polynomials

Antenna Synthesis 1. Schelkunoff’s Polynomial

( ) ( ) ( )

locations null are ........ ,z ,z ,z

β θ cos dk Ψ and e z re whe

z - z .............. z - z z - z a e a AF

321

Ψ j

N

1n 1-N21n

Ψ j n

+==

== ∑ =

2. Fourier Transform Method

( )

( ) zd e ) z(I SF

d e SF 2 1 ) z(I

Source Line (i)

z j a

2-

2 -

z j - da

2

1

′′=θ

ξξ π

=′

′ξ

ξ′ ζ

ζ

∫ 

( )

( ) e a AF

β θ cos dk Ψ where

d e AF 2 1 a

ArrayLinear ii)

M

-Mm

m j m

m j dm

2

1

=

ψ

ψ ζ

ζ

+=

ψΨ π

=

3. Woodward Lawson Method

( )

( ) ( )

( )

( )

( ) ( )

( )

( )

( )

( ) ( )

( )

cos - cos 2

dNk

cos - cos 2

dNksin b f AFfactor array Total

cos - cos

2 dNk

cos - cos 2

dNksin b f sampleeach For

ArrayLinear (ii)

cos - cos

2 k

cos - cos 2 ksin

b s SFfactor space Total

cos - cos

2 k

cos - cos 2 ksin

b s sampleeach For

:Source Line (i)

arraylinear for AF b source linefor SF b

:sampleeach for efficient -co excitation Sample 1 M 2 N samples ofNumber

............... 2, 1, 0, m m cos location Sample

separation Sample

m

m M

-Mm m

M

-Mm m

m

m

mm

m

m M

-Mm m

M

-Mm m

m

m

mm

mdm

mdm

1 - m

   

   

θθ

  

   θθ

∑=∑=θ

   

   

θθ

  

   θθ

=

   

   

θθ

  

   θθ

∑=∑=θ

   

   

θθ

  

   θθ

=

θ=θ= θ=θ=

+= ±±=∆=θ

λ =∆

==

== 

Apertures

[ ]

[ ]

[ ]

[ ]

[ ]

[ ] L N r 4

ek j - H L N r 4

ek j - E

L N r 4

ek j H L N r 4

ek j - E

0 H 0 E 7.

â â â

0 cossin -

sin -sin cos cos cos cossin sin cos sin

â â â

6.

â r cos r 5.

Sd e cos M sin M- L

Sd e sin M - sin cos M cos cos M L

Sd e cos J sin J- N

Sd e sin J - sin cos J cos cos J N 4.

Sd e M L e wherL r 4

e Sd R e M

4 F 3.

Sd e J N e wherN r 4

e Sd R e J

4 A 2.

E n̂ - M and H n̂ J 1.

rk j -rk j -

rk j -rk j -

rr

z

y

xr

r

S

cos rk j yx

S

cos rk j zyx

S

cos rk j yx

S

cos rk j zyx

S

cos rk j S

rk j -

S

Rk j - S

S

cos rk j S

rk j -

S

Rk j - S

SS

 

  

 η

+ π

=−η π

=

 

  

 η

− π

=+η π

=

==

  

  

  

  

φφ θφθφθ θφθφθ

=   

  

•′=ψ′

′φ+φ=

′θφθ+φθ=

′φ+φ=

′θφθ+φθ=

′= π

ε =′

π ε

=

′= π

µ =′

π µ

=

×=×=

φ θφθφφ

θ φθφθθ

φ

θ

ψ′ φ

ψ′ θ

ψ′ φ

ψ′ θ

ψ′

ψ′

∫∫

∫∫

∫∫

∫∫

∫∫∫

∫∫∫

Horns

( )

( ) ( ) ( )

( )

( ) ( ) ( )

2 b and 3 ay directivit optimumFor .4

4 1 -

a )aa ( p and

4 1 -

b )bb ( p 3.

cos and cos .2

- x 0 where 2 x x 4.

x k variationPhase :horn sectoral-H 3.

- y 0 where 2 y y 2.

y k variationPhase :horn sectoral-E 1.

1 12 1

2

1

h 1H

2

1

e 1E

hh2ee1

2h 2

2

1e 1

2

ρλ=ρλ=

 

  

 ρ −=

  

 ρ −=

ψρ=ρψρ=ρ

ρρ≤′δ≤⇒ ρ ′

=′δ

′δ=

ρρ≤′δ≤⇒ ρ ′

=′δ

′δ=

Some Standard Integrals

8 c 3 dx x

c cos 4.

c

2

c 2

sin

c 2

-

2 c dx e x

c cos .3

c

2

c 2

sin c dx e 2.

3 4 d sin 1.

2 / c

2 / c -

4

2 2

2 x j

2 / c

2 / c -

2

x j 2 / c

2 / c -

0

3

=  

   π

   

   

  

   α

  

   α

    

    

  

   απ

π =

 

   π

   

   

  

   α

  

   α

=∫

=θθ∫

α

α

π

Corner Reflector

sin â cos â â 1. yx φ+φ=ρ

no comments were posted
This is only a preview
3 shown on 7 pages
Download the document