Chromosomes, Genetics - Biology - Lecture Slides, Slides for Biology. Allahabad University
sandhya26 January 2013

Chromosomes, Genetics - Biology - Lecture Slides, Slides for Biology. Allahabad University

PDF (2 MB)
104 pages
8Number of download
1000+Number of visits
These are the lecture slides of Biology. Key important points are: Chromosomes, Genetics, Filamentous Bodies, Carriers of Gene, Affinity for Basic Dyes, Mitotic Metaphase, Chromatin Fibers, Number of Chromosomes, Chromos...
Download points needed to download
this document
Download the document
Preview3 pages / 104
This is only a preview
3 shown on 104 pages
Download the document
This is only a preview
3 shown on 104 pages
Download the document
This is only a preview
3 shown on 104 pages
Download the document
This is only a preview
3 shown on 104 pages
Download the document
Linkage, Gene Mapping, and Multiple Alleles


What Exactly is a chromosome?

Chromosomes are the rod-shaped, filamentous bodies present in the nucleus, which become visible during cell division.

They are the carriers of the gene or unit of

heredity. Chromosome are not visible in active nucleus

due to their high water content, but are clearly seen during cell division.

• Chromosomes were first described by Strausberger in 1875.

• The term “Chromosome”, however was first used by Waldeyer in 1888.

• They were given the name chromosome (Chromo = colour; Soma = body) due to their marked affinity for basic dyes.

• Their number can be counted easily only during mitotic metaphase.

• Chromosomes are composed of thin chromatin threads called Chromatin fibers.

• These fibers undergo folding, coiling and supercoiling during prophase so that the chromosomes become progressively thicker and smaller.

• Therefore, chromosomes become readily observable under light microscope.

• At the end of cell division, on the other hand, the fibers uncoil and extend as fine chromatin threads, which are not visible at light microscope

Number of chromosomes • Normally, all the individuals of a species have the

same number of chromosomes. • Closely related species usually have similar

chromosome numbers. • Presence of a whole sets of chromosomes is

called euploidy. • It includes haploids, diploids, triploids,

tetraploids etc. • Gametes normally contain only one set of

chromosome – this number is called Haploid • Somatic cells usually contain two sets of

chromosome - 2n : Diploid

3n – triploid 4n – tetraploid The condition in which the chromosomes sets

are present in a multiples of “n” is Polyploidy When a change in the chromosome number does

not involve entire sets of chromosomes, but only a few of the chromosomes - is Aneuploidy.

• Monosomics (2n-1) • Trisomics (2n+1) • Nullisomics (2n-2) • Tetrasomics (2n+2)

Organism No. chromosomes

• Human 46 • Chimpanzee 48 • Dog 78 • Horse 64 • Chicken 78 • Goldfish 94 • Fruit fly 8 • Mosquito 6 • Nematode 11(m), 12(f) • Horsetail 216 • Sequoia 22 • Round worm 2

Organism No. chromosomes

• Onion 16 • Mold 16 • Carrot 20 • Tomato 24 • Tobacco 48 • Rice 24 • Maize 20 • Haploppus gracilis 4 • Crepis capillaris 6

• On the extreme, round worm shows only two chromosomes, while the other extreme is represented by Protozoa having 300 or more chromosomes.

• However, most organisms have numbers between 12 to 50.

3-8 in fungi • From 8 – 16 in Angiosperms (Most common

number being 12).

Chromosome Size • In contrast to other cell organelles, the size of

chromosomes shows a remarkable variation depending upon the stages of cell division.

Interphase: chromosome are longest & thinnest • Prophase: there is a progressive decrease in their length

accompanied with an increase in thickness • Anaphase: chromosomes are smallest. • Metaphase: Chromosomes are the most easily observed

and studied during metaphase when they are very thick, quite short and well spread in the cell.

• Therefore, chromosomes measurements are generally

taken during mitotic metaphase.

The size of the chromosomes in mitotic phase of animal and plants sp generally varies between 0.5 µ and 32 µ in length, and between 0.2 µ and 3.0 µ in diameter.

The longest metaphase chromosomes found in Trillium- 32 µ.

The giant chromosomes found in diptera and they may be as long as 300 µ and up to 10 µ in diameter.

In general, plants have longer chromosomes than animal and species having lower chromosome numbers have long chromosomes than those having higher chromosome numbers

Among plants, dicots in general, have a higher number of chromosome than monocots.

Chromosomes are longer in monocot than dicots.

• In order to understand chromosomes and their function, we need to be able to discriminate among different chromosomes.

• First, chromosomes differ greatly in size • Between organisms the size difference can be over

100-fold, while within a sp, some chromosomes are often 10 times as large as others.

• In a species Karyotype, a pictorial or photographic representation of all the different chromosomes in a cell of an individual, chromosomes are usually ordered by size and numbered from largest to smallest.

Karyotype: is the general morphology of the somatic chromosome. Generally, karyotypes represent by arranging in the descending order of size keeping their centromeres in a straight line.

Idiotype: the karyotype of a species may be represented diagrammatically, showing all the morphological features of the chromosome; such a diagram is known as Idiotype.

• Chromosomes may differ in the position of the Centromere, the place on the chromosome where spindle fibers are attached during cell division.

• In general, if the centromere is near the middle, the chromosome is metacentric

• If the centromere is toward one end, the chromosome is acrocentric or submetacentric

• If the centromere is very near the end, the chromosome is telocentric.

• The centromere divides the chromosome into two arms, so that, for example, an acrocentric chromosome has one short and one long arm,

• While, a metacentric chromosome has arms of equal length.

• All house mouse chromosomes are telocentric, while human chromosomes include both metacentric and acrocentric, but no telocentric.

Autosomal pair Sex chromosome

DiploidNo. of No. of X Y (2n) metacentrics acrocentric or telocentric Cat 38 16 2 M M Dog 78 0 38 M A Pig 38 12 6 M M Goat 60 0 29 A M Sheep 54 3 23 A M Cow 60 0 29 M M Horse 64 13 18 M A M – Metacentric; A – Acrocentric

Euchromatin and Heterochromatin • Chromosomes may be identified by regions that stain in a

particular manner when treated with various chemicals. • Several different chemical techniques are used to identify

certain chromosomal regions by staining then so that they form chromosomal bands.

• For example, darker bands are generally found near the centromeres or on the ends (telomeres) of the chromosome, while other regions do not stain as strongly.

• The position of the dark-staining are heterochromatic region or heterochromatin.

• Light staining are euchromatic region or euchromatin.

• Heterochromatin is classified into two groups: (i) Constitutive and (ii) Facultative.

• Constitutive heterochromatin remains permanently in the heterochromatic stage, i.e., it does not revert to the euchromatic stage.

• In contrast, facultative heterochromatin consists of euchromatin that takes on the staining and compactness characteristics of heterochromatin during some phase of development.

Satellite DNAs When the DNA of a prokaryote, such as E.coli, is

isolated, fragmented and centrifuged to equilibrium in a Cesium chloride (CsCl) density gradient, the DNA usually forms a single band in the gradient.

On the other hand, CsCl density-gradient analysis of DNA from eukaryotes usually reveals the presence of one large band of DNA (usually called “Mainband” DNA) and one to several small bands.

These small bands are referred to as “Satellite DNAs”. For e.g., in Drosophila virilis, contain three distinct

satellite DNAs.

Prokaryotic and Eukaryotic Chromosomes

• Not only the genomes of eukaryotes are more complex than prokaryotes, but the DNA of eukaryotic cell is also organized differently from that of prokaryotic cells.

• The genomes of prokaryotes are contained in single chromosomes, which are usually circular DNA molecules.

• In contrast, the genomes of eukaryotes are composed of multiple chromosomes, each containing a linear molecular of DNA.

• Although the numbers and sizes of chromosomes vary considerably between different species, their basic structure is the same in all eukaryotes

Organism Genome Chromosome Size (Mb)a numbera Arabidopsis thaliana 70 5 Corn 5000 10 Onion 15,000 8 Lily 50,000 12 Fruit fly 165 4 Chicken 50,000 39 Mouse 1,200 20 Cow 3000 30 Human 3000 23 a – both genome size and chromosome numbers are for haploid


• The DNA of eukaryotic cell is tightly bound to small basic proteins (histones) that package the DNA in an orderly way in the cell nucleus.

• This task is substantial (necessary), given the DNA content of most eukaryotes

• For e.g., the total extended length of DNA in a human cell is nearly 2 m, but this must be fit into a nucleus with a diameter of only 5 to 10µm.

• Although DNA packaging is also a problem in

bacteria, the mechanism by which prokaryotic DNA are packaged in the cell appears distinct from that eukaryotes and is not well understood.

Prokaryotic chromosome • The prokaryotes usually have only

one chromosome, and it bears little morphological resemblance to eukaryotic chromosomes.

Among prokaryotes there is considerable variation in genome length bearing genes.

The genome length is smallest in RNA viruses

In this case, the organism is provided with only a few genes in its chromosome.

The number of gene may be as high as 150 in some larger bacteriophage genome.

• In E.coli, about 3000 to 4000 genes are organized into its one circular chromosome.

• The chromosome exists as a highly folded and coiled structure dispersed throughout the cell.

• The folded nature of chromosome is due to the incorporation of RNA with DNA.

• There are about 50 loops in the chromosome of E.coli.

• These loops are highly twisted or supercoiled structure with about four million nucleotide pairs.

• Its molecular weight is about 2.8 X109 • During replication of DNA, the coiling must be

relaxed. • DNA gyrase is necessary for the unwinding the


comments (0)
no comments were posted
be the one to write the first!
This is only a preview
3 shown on 104 pages
Download the document