Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Accurate Approximation of Standard Normal Distribution's CDF, Study Guides, Projects, Research of Physics

The accuracy evaluation of the cumulative distribution function (cdf) of the standard normal distribution using approximation formulas. The formulas are presented for the range of x from -1 to 1 and x from -3 to 3, with errors less than 10-5 and 10-7, respectively. The mathematica code is included for verification.

Typology: Study Guides, Projects, Research

2017/2018

Uploaded on 05/04/2018

Sankarsan
Sankarsan 🇮🇳

1 document

1 / 6

Toggle sidebar

Related documents


Partial preview of the text

Download Accurate Approximation of Standard Normal Distribution's CDF and more Study Guides, Projects, Research Physics in PDF only on Docsity! See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324859407 Accurate Evaluation of the Cumulative Distribution of the Standard Normal Distribution. Article · May 2018 CITATIONS 0 1 author: Some of the authors of this publication are also working on these related projects: NEURON MODELS View project ANDRICA CONJECTURE View project Alvaro H. Salas National University of Colombia 190 PUBLICATIONS 938 CITATIONS SEE PROFILE All content following this page was uploaded by Alvaro H. Salas on 01 May 2018. The user has requested enhancement of the downloaded file. Accurate Evaluation of the Cumulative Distribution of the Standard Normal Distribution. By : Alvaro H. Salas Universidad Nacional de Colombia. https : // en.wikipedia.org/ wiki/ Normal_distribution Approximation Formulas First Approximation Formula on[-3, 3] Φ(x) = def 1 2 π  -∞ x ⅇ- t 2 2 ⅆ t ≈ x 2 - 25 867 x 4398 + 76 885 2911 x 2 - 10 219 x 2668 + 201 671 17 394 x 2 + 25 811 x 3468 + 243 814 12 965 x 2 + 25 453 x 3241 + 157 319 9299 x 2 + 23 209 x 2875 + 38 477 2340  2 x2 + 77 961 4811 x 2 - 5927 x 1480 + 97 966 5217 x 2 - 5151 x 2741 + 13 529 808 x 2 + 5151 x 2741 + 13 529 808 x 2 + 5927 x 1480 + 97 966 5217 for x ≤ 3 with an error less that 10-7. 4 Normal Distribution-CDF.nb In[102]:= Join{{x, Φ[x], Aproximant, Error}}, Tablex, SetPrecision 1 2 π  -∞ x ⅇ - t 2 2 ⅆt, 15, SetPrecision x2 - 25 867 x 4398 + 76 885 2911 x 2 - 10 219 x 2668 + 201 671 17 394 x 2 + 25 811 x 3468 + 243 814 12 965 x 2 + 25 453 x 3241 + 157 319 9299 x 2 + 23 209 x 2875 + 38 477 2340  2 x2 + 77 961 4811 x 2 - 5927 x 1480 + 97 966 5217 x 2 - 5151 x 2741 + 13 529 808 x 2 + 5151 x 2741 + 13 529 808 x 2 + 5927 x 1480 + 97 966 5217 , 9, 1 2 π  -∞ x ⅇ - t2 2 ⅆt - x2 - 25 867 x 4398 + 76 885 2911 x 2 - 10 219 x 2668 + 201 671 17 394 x 2 + 25 811 x 3468 + 243 814 12 965 x 2 + 25 453 x 3241 + 157 319 9299 x 2 + 23 209 x 2875 + 38 477 2340  2 x2 + 77 961 4811 x 2 - 5927 x 1480 + 97 966 5217 x 2 - 5151 x 2741 + 13 529 808 x 2 + 5151 x 2741 + 13 529 808 x 2 + 5927 x 1480 + 97 966 5217  // ReleaseHold, {x, 0, 3, 0.25} // TableForm Out[102]//TableForm= x Φ[x] Aproximant Error 0. 0.500000000000000 0.499999998 1.86274×10-9 0.25 0.598706325682924 0.598706323 2.82803×10-9 0.5 0.691462461274013 0.691462458 3.73845×10-9 0.75 0.773372647623132 0.773372643 4.46441×10-9 1. 0.841344746068543 0.841344741 4.91155×10-9 1.25 0.894350226333145 0.894350221 5.03919×10-9 1.5 0.933192798731142 0.933192794 4.85837×10-9 1.75 0.959940843136183 0.959940839 4.3617×10-9 2. 0.977249868051821 0.977249865 3.07476×10-9 2.25 0.987775527344955 0.987775529 -1.73651×10-9 2.5 0.993790334674224 0.993790353 -1.8543×10-8 2.75 0.997020236764945 0.997020295 -5.77451×10-8 3. 0.998650101968370 0.998650184 -8.16684×10-8 Normal Distribution-CDF.nb 5 View publication stats