Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

ENGR 212- Dynamics: A University Course in Engineering Mechanics, Lab Reports of Dynamics

Information about engr 212- dynamics, a university course offered to engineering students. The course covers kinematics, newton's laws of motion, work-energy and impulse-momentum relationships, and moments of inertia. Prerequisites include engr 211 and ph 211, and students are expected to have a solid foundation in math, physics, and engineering. Course objectives, topics covered, and a schedule.

Typology: Lab Reports

Pre 2010

Uploaded on 08/31/2009

koofers-user-rnf-1
koofers-user-rnf-1 🇺🇸

5

(1)

10 documents

1 / 3

Toggle sidebar

Related documents


Partial preview of the text

Download ENGR 212- Dynamics: A University Course in Engineering Mechanics and more Lab Reports Dynamics in PDF only on Docsity! ENGR 212- Dynamics 2001-2002 Catalog Data: ENGR 212. (3 credits). Kinematics, Newton's laws of motion, and work-energy and impulse-momentum relationships applied to engineering systems. PREREQ: ENGR 211; PH 211: sophomore standing in engineering. Lec/lab. Prerequisites by Topic: 1. Math: Trigonometry; Algebra and Geometry of vectors; Differential and Integral Calculus. 2. Physics: Units of measurement, Newton's law of motion for a particle. 3. Engineering: Statics. Textbook: Hibbler, R.C., Engineering Mechanics Statics & Dynamics, Prentice Hall, ninth edition, 2001. Course Learning Objectives: By the completion of this course, students are expected to... 1. Identify and apply kinematic and dynamic equations for a particle in cartesian, cylindrical, and path coordinates. 2. Identify and apply methods of work-energy and impulse-momentum to a particle. 3. Compute the principle moments of inertia for composite bodies and integrable shapes. 4. Apply the parallel axis theorem to determine moments of inertia of a body about a specified axis. 5. Apply relative motion concepts using translating and rotating reference frames for 2-D systems. 6. Apply Newton's equations to solve problems involving rigid bodies in plane motion. Topics: 1. Kinematics of a particle, including rectangular Cartesian and plane polar coordinates and tangential & normal components of velocity and acceleration. (2 weeks) 2. Kinematics of a rigid body in plane motion. (2 weeks) 3. Newton's laws for a particle and for a system of particles. (2 weeks) 4. Moment relationships for a rigid body in plane motion. (3 weeks) 5. Work and kinetic energy. (1 week) Schedule: Lecture: Laboratory: Prepared by M. F. Costello Date: November 2001 ENGR 212- Dynamics Course Learning Objectives Mapped to ABET Goals ABET Requirements Course Learning Objectives A bi lit y to a pp ly m at h, s ci en ce , a nd e ng in ee ri ng . A bi lit y to d es ig n an d co nd uc t e xp er im en ts , a s w el l a s to an al yz e an d in te rp re t d at a. A bi lit y to d es ig n a sy st em , c om po ne nt , o r pr oc es s to m ee t d es ir ed n ee ds . A bi lit y to f un ct io n on m ul tid is ci pl in ar y te am s. A bi lit y to id en tif y, f or m ul at e, a nd s ol ve e ng in ee ri ng p ro bl em s. U nd er st an di ng o f pr of es si on al a nd e th ic al r es po ns ib ili ty . A bi lit y to c om m un ic at e ef fe ct iv el y. B ro ad e du ca tio n ne ce ss ar y to u nd er st an d th e im pa ct o f en gi ne er in g so lu tio ns in a gl ob al a nd s oc ie ta l c on te xt . R ec og ni tio n of th e ne ed f or , a nd a n ab ili ty to e ng ag e in , l if e- lo ng le ar ni ng . K no w le dg e of c on te m po ra ry is su es . A bi lit y to u se th e te ch ni qu es , s ki lls , a nd m od er n en gi ne er in g to ol s ne ce ss ar y fo r en gi ne er in g pr ac tic e. A bi lit y to a pp ly a dv an ce d m at he m at ic s th ro ug h m ul tiv ar ia te c al cu lu s an d di ff er en tia l e qu at io ns . Fa m ili ar ity w ith s ta tis tic s an d lin ea r al ge br a. K no w le dg e of c he m is tr y an d ca lc ul us -b as ed p hy si cs w ith d ep th in a t l ea st o ne . A bi lit y to w or k pr of es si on al ly in th e th er m al s ys te m s ar ea in cl ud in g th e de si gn a nd r ea liz at io n of s uc h sy st em s. A bi lit y to w or k pr of es si on al ly in th e m ec ha ni ca l s ys te m s ar ea in cl ud in g th e de si gn a nd r ea liz at io n of s uc h sy st em s. St ud en t S el f A ss es sm en t o f C ap ab ili ty (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) Objective 1 S L S L L S Objective 2 S L S L L S Objective 3 S L S L L S Objective 4 S L S L L S Objective 5 S L S L L S Objective 6 S L S L L S SUMMARY S L S L L S S = Substantial correspondence L = Limited correspondence P = Potential for correspondence (instructor dependent) Prepared by M. F. Costello Date: November 2001