Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Comparing Population Means: Inferences, Confidence Intervals, and Hypothesis Tests - Prof., Study notes of Data Analysis & Statistical Methods

An overview of inferential statistics for comparing two population means, focusing on independent and paired samples. It covers the identification of the target parameter, the standard deviation requirement, the normal distribution approximation, and the construction of confidence intervals and hypothesis tests for large and small samples. The document also includes examples and calculations for both independent and paired samples.

Typology: Study notes

Pre 2010

Uploaded on 09/17/2009

koofers-user-07o
koofers-user-07o 🇺🇸

10 documents

1 / 25

Toggle sidebar

Related documents


Partial preview of the text

Download Comparing Population Means: Inferences, Confidence Intervals, and Hypothesis Tests - Prof. and more Study notes Data Analysis & Statistical Methods in PDF only on Docsity! Chapter 9 — Part A Inferences Based on Two Samples: Confidence Intervals and Tests of Hypotheses Identifying the Target Parameter µ1 ‐ µ2 p1 ‐ p2 σ12/σ22 Mean difference;  difference in averages Difference between  proportions,  percentages,  Ratio of variances;  difference in  variability or spread;  QuantitativeData fractions or rates;  compare proportions QualitativeData compare variation QuantitativeData      Comparing Two Population Means:  Independent Sampling  Large Sample Confidence Interval for µ1 ‐ µ2 2 2 2 1)()( +±± σσ 22 21 2/212/21 21 ss nn zxxzxx xx −=− − αα σ 2 2 1 1 2/21 )( nn zxx +±−≅ α Example (Part I) C ffi i l d b h l h f i i lompany o c a s are concerne  a out t e  engt  o  t me a part cu ar  drug retains its potency. A random sample (sample 1) of 50 bottles of  the product is drawn from the current production and analyzed for  ( )potency. A second sample  sample 2  of 50 bottles is obtained, stored  for 1 year, and then analyzed. The summary readings are: 5050 24.0 83.9 22 2 2 =≈ = = s x n σ32.0 37.10 11 1 1 =≈ = = s x n σ Obtain a 95% confidence  interval for the difference  among sample groups. Example (Part I) 240 83.9 50 2 2 = = x n 320 37.10 50 1 1 = = x n 05.0=α .22 =≈ sσ.11 =≈ sσ 2 2 2 1 ss 21 2/212/21 )()( 21 nn zxxzxx xx +±−≅±− − αα σ 24.032.0961)8393710( 22 ± 5050 ... +−= ]65104290[ 057.096.1)54.0( ×±= .;.= Note that 0 is not contained in this interval; therefore, we can think that  there is a significant difference on population means among these two  samples (with a 95% confidence level). Example (Part II) Is there enough evidence to thing that  there is a change in the drug potency after  being stored for 1 year? Use α = 0.05. 83.9 50 2 2 = = x n 37.10 50 1 1 = = x n 24.022 =≈ sσ32.011 =≈ sσ H : (µ - µ ) = 0 or H : µ = µ0 1 2 Ha: (µ1 - µ2) ≠ 0 0)8393710()( Dxx240320 22 0 1 2 Ha: µ1 ≠ µ2 55.9 057.0 .. 21 021 = −− = −− = −xx oz σ057.050 . 50 . 21 =+≅−xxσ 9 55 | | > 1 96 H j t H. = zo zα/2 = . ence, we re ec 0. Note that we can also calculate a p-value for this test. Comparing Two Population Means:  Independent Sampling For small samples, the t‐distribution can be used with a  pooled sample estimator of σ2 s 2           ,  p )1()1( 222 2 112 −+−= snsnsp 221 −+ nn Small Sample Confidence Interval for µ1 ‐ µ2 ⎟⎟ ⎞ ⎜⎜ ⎛ +±−=±− 222/2122/21 11)()( stxxtxx σ ⎠⎝ −+−−+ 21 ,, 212121 nnpnnxxnn αα Th l f t i b d df 2e va ue o   s  ase  on  = n1 + n2 – . Comparing Two Population Means:  Independent Sampling One‐Tailed Test H ( ) D Two‐Tailed Test H ( ) D   0:  µ1 ‐ µ2  =  0 Ha: (µ1 ‐ µ2) > D0 (< D0) 0:  µ1 ‐ µ2  =  0 Ha: (µ1 ‐ µ2) ≠ D0 Rejection region: |to |> tα Rejection region: |to| > t α/2 )( D Test Statistic: ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + −− = 2 021 11 nn s xxt p o 21 Conditions:  1) The two samples are randomly selected from the target population  and independent of each other        . 2) Both samples populations have distributions that are approx.  normal. 3) The population variances are equal. Example 12 12 36.14 58.26 1 1 1 = = = s x n 86.13 67.39 2 2 2 = = = s x n 21 210 : 05.0: μμ αμμ < == aH H 0)(: 0)(: 21 210 <− =− μμ μμ aH H 2 22 21 2 22 2 112 11.14 21212 86.131136.1411 2 )1()1( = −+ ×+× = −+ −+− = nn snsnsp 272.2 12 1 12 111.14 0)67.3958.26( 11 )( 2 021 −= ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + −− = ⎟⎟ ⎞ ⎜⎜ ⎛ + −− = s Dxxt p o 21 ⎠⎝ nn 2.272 = | to | > t α n1+n2 2 = t 0 05 22 = 1.717 Hence we reject H0., - . , Note that we can also calculate a p-value for this test. Example 21 210 : 05.0: μμ αμμ < == aH Hdata Tapeworms;input Treatment $ Count; datalines; Drug 18 Drug 43 Drug 28 Drug 50 Drug 16 Drug 32 Drug 13 Drug 35 Drug 38 Drug 33 Drug 6 Drug 7 Untreated 40 Untreated 54 Untreated 26 Untreated 63 Untreated 21 Untreated 37 Untreated 39 Untreated 23 Untreated 48 Untreated 58 Untreated 28 Untreated 39 ; proc ttest data=Tapeworms alpha=0.10; class Treatment; var Count; Note that we need to look at the output for  the Pooledmethod and that the p‐value  run; reported needs to be divided by 2, as we are  dealing with a 1‐sided hypothesis. Comparing Two Population Means:  Paired Difference Experiments    • Known also as paired data. • Pairs of observations are dependent (i e correlated)          . .  . • It can provide more information about the difference between  population means than an independent samples experiment. • The population means are compared by looking at the differences                    between pairs of experimental units that were similar prior to the  experiment. • Differencing removes some sources of variation (mainly correlation)              . Example R B f Af Diff 24n at e ore ter 1 8.7 9.4 ‐0.7 2 7.9 9.8 ‐1.9 3 8.3 9.9 ‐1.6 4 8.4 10.3 ‐1.9 di = xi1 – xi2 05.0 12 = = = α dn 5 9.2 8.9 0.3 6 9.1 8.8 0.3 7 8.2 9.8 ‐1.6 8 8.1 8.2 ‐0.1 9 8.9 9.4 ‐0.5 10 8.2 9.9 ‐1.7 11 8.9 12.2 ‐3.3 12 7.5 9.3 ‐1.8 Mean 8.450 9.658 ‐1.208 ± d st St. dev. 0.516 0.988 1.077 =− d nd n x d 1,2/α Example R B f Af Diff 24n at e ore ter 1 8.7 9.4 ‐0.7 2 7.9 9.8 ‐1.9 3 8.3 9.9 ‐1.6 4 8.4 10.3 ‐1.9 di = xi1 – xi2 05.0 12 = = = α dn 5 9.2 8.9 0.3 6 9.1 8.8 0.3 7 8.2 9.8 ‐1.6 8 8.1 8.2 ‐0.1 9 8.9 9.4 ‐0.5 10 8.2 9.9 ‐1.7 11 8.9 12.2 ‐3.3 12 7.5 9.3 ‐1.8 Mean 8.450 9.658 ‐1.208 077.12081 ±± tstx d St. dev. 0.516 0.988 1.077 ]524.0;892.1[077.1201.2208.1 12 . 11,025.01,2/ −−=±−= −=− nd nd dα 12 Comparing Two Population Means:  Paired Difference Experiments    21 μμμ −=dHypothesis test for: One‐Tailed Test H0: µd = D0 Two‐Tailed Test H0: µd = D0 Ha: µd < D0 (> D0) Rejection region: Ha: µd ≠ D0 Rejection region: |to |< ‐tα (> tα) |to| > t α/2 Dx − Test Statistic: for small sample sizes dd d o ns t / 0= d Dx 0− for large sample sizes dd o n z /σ =