Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Introduction to Tableau Software Starting Survey Analysis - Slides | INFO 424, Study notes of Information Technology

Material Type: Notes; Professor: Ostergren; Class: INFO VIS & AESTH; Subject: Informatics; University: University of Washington - Seattle; Term: Autumn 2007;

Typology: Study notes

Pre 2010

Uploaded on 03/18/2009

koofers-user-byf
koofers-user-byf 🇺🇸

10 documents

1 / 3

Toggle sidebar

Related documents


Partial preview of the text

Download Introduction to Tableau Software Starting Survey Analysis - Slides | INFO 424 and more Study notes Information Technology in PDF only on Docsity!

Intro to Tableau Software

Starting Survey Analysis

Friday 5 Oct 2007

Polle Zellweger

Tableau Software Tool

Data Transformations

Raw Data

Other units

  • Sentence
  • Paragraph
  • Section
  • Chapter
  • Characters
  • Pictures

D3 0 1 0

D2 0 0 1

D1 1 1 0

Documentaardvarkabout acorn

Documents

Meta-data

billion

bolivar

book boron bottom

broth base

bay

bible

Words

aardvark

apply

acorn

arrow

anode

anonymous

answer

are

area

about absent

Word Vectors

Meaning

D3 6 Michael 9/17/

D2 3 Sally 3/9/

D1 4 John 1/5/

Document LengthAuthor Date

Raw Data Issues

Missing data

Variable formats

Errors

Variable types

Table structure D3^6 Michael Fall

A 3.5 3/9/
D1 4 Sally 1/5/

Document Length Author Date

VS

D3 0 1 0

D2 0 0 1

D1 1 1 0

Document aardvark about acorn

D1, … D1, D3,.. D2,..

aardvarkabout acorn

Data Transformations

Clean raw data

Calculations

Structural

  • Demote
  • Promote
  • ….
I4 2000 1
I3 1964 36
I2 1952 48
I1 1908 1965 53
IndividualBirth Death Age

Data to Present

Consider user task

  • Precise data vs. overview, summary
  • Actual vs. derived values

Examples of derived values

  • Count
  • Rank
  • Percent
  • Average (mean vs. median)
  • Deviation / difference
  • Distribution (range vs. standard deviation)
  • Time series
  • Correlation

Individuals

Professions

I8 33 1 0 0 0 0 0 0 0 0
I7 27 3 0 0 0 1 0 0 0 0
I6 51 7 0 0 0 0 0 0 0 0
I5 36 4 1 0 0 0 0 0 0 1
I4 22 10 0 0 0 0 0 1 0 0
I3 36 8 0 0 0 1 0 0 0 0
I2 48 6 0 1 0 0 0 0 0 0
I1 53 1 0 1 0 0 0 0 0 0

IndivAge IncomeP1P2 P3P4P5P6 P7 P

Calculation (before)

I8 33 1 0 0 0 0 0 0 0 0
I7 27 3 0 0 0 1 0 0 0 0
I6 51 7 0 0 0 0 0 0 0 0
I5 36 4 1 0 0 0 0 0 0 1
I4 22 10 0 0 0 0 0 1 0 0
I3 36 8 0 0 0 1 0 0 0 0
I2 48 6 0 1 0 0 0 0 0 0
I1 53 1 0 1 0 0 0 0 0 0

IndivAge IncomeP1P2 P3P4P5P6 P7 P

Calculation (after)

Classing

I8 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
I7 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
I6 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
I5 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
I4 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
I3 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
I2 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
I1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
P1P2P3P4P5P6P7P

Inc 9-

Inc 6-

Inc 3-

Inc 0-

Age

Age 20- 40

Age Indiv0-

Structural

I8 33 10 00 0 0 0 0 0
I7 27 30 00 1 0 0 0 0
I6 51 70 00 0 0 0 0 1
I5 36 41 00 0 0 0 0 0
I4 22 100 00 0 0 1 0 0
I3 36 80 00 1 0 0 0 0
I2 48 60 10 0 0 0 0 0
I1 53 10 10 0 0 0 0 0
P
P
P
P
P
P
P
P

IndivAge Income 1

Promote Professions

P8 51 7
P7 0 0
P6 22 10
P5 0 0
P4 31 5.
P3 36 8
P2 51 3.
P1 36 4

Avg Inc

Avg Prof Age

Target: scatterplot

0
0

Age

Income

P
P
P
P
P
P
P
P
P8 51 7
P7 0 0
P6 22 10
P5 0 0
P4 31 5.
P3 36 8
P2 51 3.
P1 36 4

Avg Inc

Avg Prof Age