Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
mechanics mechanics kinematics of a particles general curvilinear motion
Typology: Exercises
1 / 44
Prof. Imam Morgan ( 2 )
5 Curvilinear Motion
Particle moving along a curve other than a straight line is in
specify, completely, this motion and to determine the
Prof. Imam Morgan ( 3 )
a
r
v
Path
General
Objectives r Positionvector r r t
...
tangenttothe path
v Velocityvector v v t
...
nottangenttothe path
a Accelerationvector a a t
...
Kinematic
Parameters
Repeated Slide
Prof. Imam Morgan ( 4 )
Curvilinear Motion
(General Discussion)
Curvilinear motion occurs when the particle moves along a curved path.
Since this path is often described in three dimensions, vector analysis
(mainly components) will be used to formulate the particle’s position,
velocity, and acceleration.
5.1 Position Vector, Velocity Vector, and Acceleration vector
A (^) Position Vector
reference frame and the
Prof. Imam Morgan ( 5 )
Consider particle which occupies
r
r
s curvilineardisplacement
r displacement vector
...
...
D
D
So, becomes shorter and shorter,
r
D
B (^) Velocity Vector
Prof. Imam Morgan ( 6 )
D
D
dt
ds
t
s v
dt
dr
t
r v
t
t
0
0
lim
lim
instantaneous velocity ( vector )
instantaneous speed ( scalar )
is tangent to
the path
v
Prof. Imam Morgan ( 7 )
C (^) Acceleration Vector
Consider velocity of particle at
v
v
v
v
D v^
D dt
dv
t
v a t
0
lim
instantaneous acceleration ( vector )
tothepath
a isnot tangent
Prof. Imam Morgan ( 8 )
doesnotgive thedirection of motion
not tangent tothepath(inconcaveside)
...acceleration vector
gives thedirectionof motion
tangent tothepath
...velocity vector
... position vector
dt
dv a
a
dt
dr v
v
r
Prof. Imam Morgan ( 9 )
given by its rectangular components,
r xi yj zk
► Velocity vector ,
v i v j v k
k xi yj zk dt
dz j dt
dy i dt
dx v
x y z
The total velocity v is tangent to the path.
5.2 Rectangular Components
Now, we shall express each vector in terms of its components for different cases;
namely: Rectangular Components
Tangential and Normal components
Radial and Transversal components
5.
5.
5.
Prof. Imam Morgan ( 10 )
► Acceleration vector ,
a i a j a k
k xi yj zk dt
d z j dt
d y i dt
d x a
x y z
2
2
2
2
2
2
a
in concave side
Prof. Imam Morgan ( 11 )
Projectile
Path
Vertical
Plane
Reference
Line
P
Firing (initial)
Velocity
Reference Plane
Projectile
Motion ►An important application
of Cartesian coordinates is
that for study of motion
of a particle that moves in
a constant acceleration
►Basic Assumptions:
surface of the earth)
● Neglect air resistance
● The projectile is
considered as a
particle.
Important application
Prof. Imam Morgan ( 12 )
vx=?
vy=?
y(t)=?
x(t)=?
α
Basic Relations
Given : vo ≡ initial velocity α ≡ inclination of vo
w.r.to horizontal
Required : Position ……… x (t) , y (t) Velocity ……… vx (t) ,vy (t)
Equation of the path y = y (x)
2
1
0
x v cos t
v v cos
x
o
x o
..
4 2
1
3
2 y v sin t gt
v v sin gt
y g
o
y o
..
Eliminating t from (2) and (4) we get the path
5 2 cos
tan
2 2 2
x v
g y x
o^
Parabolic Path
Prof. Imam Morgan ( 13 )
►The equations (1) through (5) can be used to solve any projectile’s
motion if the following conditions are satisfied:
x
y
α = 0
x
y
α = - 15 o
4 km
1 km^ x
y
x
y
Prof. Imam Morgan ( 14 )
C
B
O ≡ A
Hmax
R
x
y
vo
α
Example (5)
Prof. Imam Morgan ( 15 )
g
v sin T
v sin T gT
useequation ; and substitutey and t T
at C: y
o
o
2
2
1 0
4 0
0
2
g
v sin R
g
v sin v cos
R v cos T
o
o o
o
2
2
2
C
B
A
vo
α
R
Hmax
y
x
Prof. Imam Morgan ( 16 )
α = 45 o
Rmax
α > 45 o
α < 45 o
The maximum rang
α = 45 o^ in condition
g
v R
o max
2
g
v R
2
Prof. Imam Morgan ( 17 )
g
v H
g
v
g
v H v
substitute in
g
v t
v gt
o
o o o
o A B
o A B
sin
sin
sin 1 sin
sin
0 sin
2 2
max
2
max
C
B
A
vo
α
R
Hmax
y
x
Figure.
Important
Prof. Imam Morgan ( 18 )
C
B
O ≡ A
x
y
y
E
D
vE
vD
Important Note
►The projectile will have the same velocity, as it passes through the same
v vo 2 g y
2 2 Proof is recommended
vo
α
Prof. Imam Morgan ( 19 )
A projectile is fired from the edge of a 150 m cliff with an initial velocity
R
hmax
C
B A
R
hmax
C
B A
y
x
vo= 180 m/s α = 30 o
Example (6)
Prof. Imam Morgan ( 20 )
R. m
R. m or, R. m refused
. R. R
R cos
. Rtan
x R and y
Useequationof the path ,whereatC:
30977
30977 239 8
2019 10 0577 150 0
2180 30
981 150 30
150
5
4 2
2 2 2
T. sec
T. sec or, T. sec refused
T. T.
sin T. T
Inequation substitute y
1991
1991 154
1837 306 0
981 2
1 150 180 30
4 150
2
2
R
hmax
C
B A
y
x
vo= 180 m/s α = 30 o
One can use eq. (2)
Prof. Imam Morgan ( 21 )
h m
.
sin h
TheheightH above x axisis obtained before:
at B: v
max
max
max
y
563
150 413
2 981
180 30 150
0
2 2
R
hmax
C
B A
y
x
vo= 180 m/s α = 30 o
Prof. Imam Morgan ( 22 )
Example (7)
A projectile is fired with an initial
horizontal distance of 12000 ft.
Neglecting air resistance, determine
Solution:
We can use directly equation of
the path:
2 2 2 2 cos
tan x v
g y x
Where, at B:
Prof. Imam Morgan ( 23 )
2 (^2 2)
2 800 cos
2000 12000 tan
Knowing that:
2 2 2
sec 1 tan cos
So, the target will be hit if either of these two firing
angles is used (two possible solutions)
Recommended :
Calculate the time of flight
Prof. Imam Morgan ( 24 )
This type of coordinates is used
5.3 Tangential and Normal Components (Intrinsic or,
Natural Coordinates)
or
Prof. Imam Morgan ( 25 )
Position
Plane Path