Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Lecture 4 Glycolysis - Bioenergetics | BIS 103, Study notes of Biology

Material Type: Notes; Class: Bioenergetics/Metabolism; Subject: Biological Sciences; University: University of California - Davis; Term: Spring 2009;

Typology: Study notes

Pre 2010

Uploaded on 07/31/2009

koofers-user-0j7
koofers-user-0j7 🇺🇸

10 documents

1 / 36

Toggle sidebar

Related documents


Partial preview of the text

Download Lecture 4 Glycolysis - Bioenergetics | BIS 103 and more Study notes Biology in PDF only on Docsity!

Lecture 4Lecture 4

Glycolysis^ Glycolysis

(EmbdenEmbden-(

-Meyerhof Pathway)Meyerhof Pathway)

Cleavage of glucose andCleavage of glucose

Substrate-Substrate

-levellevel phosphorylation

phosphorylation

of ADP to ATPof ADP to ATP

Background materialBackground material

Gibbs Free EnergyGibbs Free Energy • Δ G =

Δ H - T

Δ S

• Δ G = RTlnQ – RTlnK

eq^

Q = [P

real

]/[R

real

]

• Δ G

o’ = – RTlnK

eq^

T = 298K (

o C)

• Δ G =

Δ G

o’ + RTlnQ

Table 4

Reduction potentialReduction potential • Δ E = E

oxidant

– E

reductant

Table 3

• Δ E = –

Δ G/nF

EnzymesEnzymes • Amino acids and their reactions • Classification • Regulation

CARBOHYDRATES

p. 21

Glucose

Lactate

Ribose-5-P

Oxaloacetate

Amino acids

Ketonebodies

Fatty acids Cholesterol

ATP

NADH

Pyruvate

Glucose-6-P

Glycogen

Acetyl-CoA

NADPH

NADH

LIPIDS

PROTEINS

GlycolysisGlycolysis

The “^ The

“PowertrainPowertrain”

” of Human Metabolism (Overview)of Human Metabolism (Overview)

O^2

CO

H^ O^2

CHO H
OH H
HO
OH
H
OH
H CH
OH 2
H
CHO OH
H
HO
OH
H
OH
H
CHOPO^2

2- 3

GLC-6-P

GLC

ATP^

ADP

CHOH^2
O H
HO
OH
H
OH
H
CHOPO^2

ATP 2- 3

ADP

CHOPO^2
2- 3 O H
HO
OH
H
OH
H
CHOPO^2

2- 3

CHOPO^2
2- 3 O
CHOH^2
HC H

+ OH 2-CHOPO^23 +NAD^ NADH

H
C OH CHOPO^2
O 2-^3
2-OPO 3

ATP^

ADP

H
C OH CHOPO^2
O 2-^3
H
C
2-OPO 3
O CHOH 2
C
2-OPO 3
O CH 2
C
O
O CH 3

ATP^

ADP

DHAP G-3-P

1,3 bisPGA

3-PGA

2-PGA

PEP

PYR

H^
O
OH
H OH
CHOH^2 OH H
H^
O
OH
H OH
CHOPO^2 OH H

2- 3

ATP^

1 ADP

O^ POHC^322

CHOH^2 OH
H OH
H
H^
OOH
O^ POH^3
C 2
CHOPO^2 OH

2- 3

H OH
H
H^
OOH

ATP^

3 ADP

Fischer projection-open chain Ringform

O

F-1,6-bisP

++ H

123456 3,42,5 1,

Haworthprojection

HPO^4

2-

-^ O
- O
-^ O
-^ O

F-6-P

H^ O^2

OH^
OH

2 Molecules

CHO H
OH H
HO
OH
H
OH
H CH
OH 2
H
CHO OH
H
HO
OH
H
OH
H
CHOPO^2

2- 3

GLC-6-P

GLC

ATP^

ADP

CHOH^2
O H
HO
OH
H
OH
H
CHOPO^2

ATP 2- 3

ADP

CHOPO^2
2- 3 O H
HO
OH
H
OH
H
CHOPO^2

2- 3

CHOPO^2
2- 3 O
CHOH^2
HC H

+ OH 2-CHOPO^23 +NAD^ NADH

H
C OH CHOPO^2
O 2-^3
2-OPO 3

ATP^

ADP

H
C OH CHOPO^2
O 2-^3
H
C
2-OPO 3
O CHOH 2
C
2-OPO 3
O CH 2
C
O
O CH 3

ATP^

ADP

DHAP G-3-P

1,3 bisPGA

3-PGA

2-PGA

PEP

PYR

H^
O
OH
H OH
CHOH^2 OH H
H^
O
OH
H OH
CHOPO^2 OH H

2- 3

ATP^

1 ADP

O^ POHC^322

CHOH^2 OH
H OH
H
H^
OOH
O^ POH^3
C 2
CHOPO^2 OH

2- 3

H OH
H
H^
OOH

ATP^

3 ADP

Fischer projection-open chain Ringform

O

F-1,6-bisP

++ H

123456 3,42,5 1,

Haworthprojection

HPO^4

2-

-^ O
- O
-^ O
-^ O

F-6-P

H^ O^2

OH^
OH

2 Molecules

p. 25

Aerobic Glycolysis^ Aerobic

Glycolysis (Overview)

(Overview)

Cellular LogicCellular LogicWhy add a phosphate? Blood glucose level ~ 5 mM

Cell glucose level ~ 4 - 5 mM

CHO H OH H HO

OH H

OH CHOH H CHOH^2 OH H HO

OH H

OH H CHOH^2

CHOH OH H HO

OH H

OH CHOH H CHOH^2 OH H HO

OH H

OH H CHOH^2

Why add a phosphate?

1. Prevents reverse diffusion through GluT.2. Prevents diffusion through plasma membrane.3. Maintains the Glucose concentration gradient.4. Binds to enzymes better (recognition tag).

Cellular LogicCellular Logic

H

CHO

OH H

HO

OH

H

OH

H

CH^2

O

O^

O OHOH O H O P -O^ O P -O O O P -O

  • O

H N N

N N NH^2

Nucleophile(-OH)

Electrophile

(P)

H

Glucose (Glc)

ATP

H+

Enzyme

The 1. Reaction of Glycolysis^ The 1. Reaction of

Glycolysis

p. 24,

Enzyme Class: TransferaseSpecifically, phosphotransferase or “kinase”

O^

O OHOH

O H

O P -O

O P -O

O OP

-OO

-

H

N N

N N

NH^2

O^

O OHOH

O H

O P -O

H

N N

N N

NH^2

  • O P -O^

O

H

CHO

OH H

HO

OH

H

OH

H

CHO^2

-

H

CHO

OH H

HO

OH

H

OH

H

CHO^2

O P

  • O-O

Glc-6-P

ADP

p. 26

Energy coupling…

Δ G Calculations on 1. Reaction in Glycolysis Δ G Calculations on 1. Reaction in

Glycolysis (

(PhosphorylationPhosphorylation of Glucose)

of Glucose)

Summary of Chalk Board CalculationsSummary of Chalk Board Calculations

Glc

+

Pi

Î

Glc-6-P

+

H

O^2

+13.

3.7x

-

5 mM

1 mM

0.083 mM

+21.

2.8x

-

(intracellular concentrations)

Δ G

o’ or

Δ G (kJmol

-1)^

Keq

Δ G =

Δ G

o’^ + RTln[P]/[S]

Δ G = +13.9 kJmol

-1^ + (8.315 Jmol

-1 K

-1^ x 310 K) x ln[83 x

-6 ]/[5 x 10

-3 ][1 x 10

-3 ]

Δ G = +13.9 kJmol

-1^ + (2.578 kJmol

-1 ) x 2.

Δ G = +13.9 + 7.2 = +21.1 kJmol

-

Δ G (intracellular conditions are even more unfavorable than standard conditionsfor the reaction to proceed as desired)

o’^ = –RTlnKeq Keq = e^(-

Δ G

o’^ /RT) = e^(-13,900 Jmol

-1/8.315 Jmol

-1-1K^

x 298 K) = 0.

Q: How to drive glucose phosphorylationQ: How to drive glucose

phosphorylation forward

forward despite large positive

despite large positive

Δ G? Δ G?

A: Couple to much more favorable reaction (larger negativeA: Couple to much more favorable reaction (

larger negative

Δ G) such as to Δ G) such as to

the hydrolysis of ATP!!the hydrolysis of ATP!!ATP

+

H

O^2

Î^

ADP

+

Pi

-30.

2.2x

-46.

6.8x

Δ G

o’ or

Δ G (kJmol

-1)^

Keq

Intracellular [ATP]/[ADP][Pi] = 500 or higher (“phosphorylation potential”

)

Δ G =

Δ G

o’^ + RTln[P]/[S]

Δ G = - 30.5 + RTln 1/500 Δ G = - 30.5 + (- 15.4) = - 46.5 kJmol

-

Combination (coupling) of both reactions via an enzyme (hexokinaseCombination (coupling) of both reactions via an enzyme (

hexokinase):

):

Glc

+

Pi

Î

Glc-6-P

+

H

O^2

+13.

3.7x

-

Intracellular conditions

+21.

2.8x

-

Δ G

o’ or

Δ G (kJmol

-1)^

Keq

ATP

+

H

O^2

Î^

ADP

+

Pi

-30.

2.2x

Intracellular conditions

-46.

6.8x

Glc

+

ATP

Î

Glc-6-P

+

ADP

-16.

8.1x

Intracellular conditions

-25.

1.9x

Note:Coupling of a reaction to ATP hydrolysis can shift its Keq up to 10

8 –fold !!

(2.8x

-4^ Î

1.9x

4 )

Hexokinase (induced fit)

(Liver)

Isoenzymes: catalyze the same reaction but differ in propertiesIsoenzymes

: catalyze the same reaction but differ in properties

CHO H
OH H
HO
OH
H
OH
H CH
OH 2
H
CHO OH
H
HO
OH
H
OH
H
CHOPO^2

2- 3

GLC-6-P

GLC

ATP^

ADP

CHOH^2
O H
HO
OH
H
OH
H
CHOPO^2

ATP 2- 3

ADP

CHOPO^2
2- 3 O H
HO
OH
H
OH
H
CHOPO^2

2- 3

CHOPO^2
2- 3 O
CHOH^2
HC H

+ OH 2-CHOPO^23 +NAD^ NADH

H
C OH CHOPO^2
O 2-^3
2-OPO 3

ATP^

ADP

H
C OH CHOPO^2
O 2-^3
H
C
2-OPO 3
O CHOH 2
C
2-OPO 3
O CH 2
C
O
O CH 3

ATP^

ADP

DHAP G-3-P

1,3 bisPGA

3-PGA

2-PGA

PEP

PYR

H^
O
OH
H OH
CHOH^2 OH H
H^
O
OH
H OH
CHOPO^2 OH H

2- 3

ATP^

1 ADP

O^ POHC^322

CHOH^2 OH
H OH
H
H^
OOH
O^ POH^3
C 2
CHOPO^2 OH

2- 3

H OH
H
H^
OOH

ATP^

3 ADP

Fischer projection-open chain Ringform

O

F-1,6-bisP

++ H

123456 3,42,5 1,

Haworthprojection

HPO^4

2-

-^ O
- O
-^ O
-^ O

F-6-P

H^ O^2

OH^
OH

2 Molecules

CHO H
OH H
HO
OH
H
OH
H CH
OH 2
H
CHO OH
H
HO
OH
H
OH
H
CHOPO^2

2- 3

GLC-6-P

GLC

ATP^

ADP

CHOH^2
O H
HO
OH
H
OH
H
CHOPO^2

ATP 2- 3

ADP

CHOPO^2
2- 3 O H
HO
OH
H
OH
H
CHOPO^2

2- 3

CHOPO^2
2- 3 O
CHOH^2
HC H

+ OH 2-CHOPO^23 +NAD^ NADH

H
C OH CHOPO^2
O 2-^3
2-OPO 3

ATP^

ADP

H
C OH CHOPO^2
O 2-^3
H
C
2-OPO 3
O CHOH 2
C
2-OPO 3
O CH 2
C
O
O CH 3

ATP^

ADP

DHAP G-3-P

1,3 bisPGA

3-PGA

2-PGA

PEP

PYR

H^
O
OH
H OH
CHOH^2 OH H
H^
O
OH
H OH
CHOPO^2 OH H

2- 3

ATP^

1 ADP

O^ POHC^322

CHOH^2 OH
H OH
H
H^
OOH
O^ POH^3
C 2
CHOPO^2 OH

2- 3

H OH
H
H^
OOH

ATP^

3 ADP

Fischer projection-open chain Ringform

O

F-1,6-bisP

++ H

123456 3,42,5 1,

Haworthprojection

HPO^4

2-

-^ O
- O
-^ O
-^ O

F-6-P

H^ O^2

OH^
OH

2 Molecules

p. 25

Aerobic Glycolysis^ Aerobic

Glycolysis (Overview)

(Overview)

H

CHO

OH H

HO

OH

H

OH

H

CH^2

OH

H

CHO

OH H

HO

OH

H

OH

H

CH^2

OPO

2- 3

GLC-6-P

GLC

ATP

ADP

CH^2

OH O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

1

2

Fischer projection-open chain HaworthprojectionRingform

F-6-P

H

CHO

OH H

HO

OH

H

OH

H

CH^2

OH

H

CHO

OH H

HO

OH

H

OH

H

CH^2

OPO

2- 3

GLC-6-P

GLC

ATP

ADP

CH^2

OH O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

1

2

Fischer projection-open chain HaworthprojectionRingform

F-6-P

p. 25

Isomerization^ Isomerization

Reaction 2:Reaction 2:Phosphogluco isomerasePhosphogluco

isomerase or Glucose-6-P ketolisomerase (see p 24) Δ G^ Δ G

o^ o ’ = 1.67 kJ/mol= 1.67 kJ/mol’

Δ G = - Δ G =

- 2.92 kJ/mol2.92 kJ/mol

CH^2

OH O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

ATP

ADP

CH^2

OPO

2- (^3) O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

CH^2

OPO

2- (^3) O

CH^2

OH H

HC

OH CH^2

OPO

2- 3

DHAP G-3-P

3

4

5

O

(^123456) F-1,6-bisP

(^123456)

CH^2 F-6-P

OH O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

ATP

ADP

CH^2

OPO

2- (^3) O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

CH^2

OPO

2- (^3) O

CH^2

OH H

HC

OH CH^2

OPO

2- 3

DHAP G-3-P

3

4

5

O

(^123456) F-1,6-bisP

(^123456)

F-6-P

p. 25

Phosphorylation^ Phosphorylation

Reaction 3: PhosphofructokinaseReaction 3:

Phosphofructokinase-

-1 (PFK1 (PFK-

-1)1) or

ATP:Fructose-6-P 1-phosphotransferase ΔΔ GG

oo^ ’’ == -

-14.2 kJ/mol14.2 kJ/mol

ΔΔ GG

erythrocyteerythrocyte

== --18.8 kJ/mol 18.8 kJ/mol

CH^2

OH O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

ATP

ADP

CH^2

OPO

2- (^3) O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

CH^2

OPO

2- (^3) O

CH^2

OH H

HC

OH CH^2

OPO

2- 3

DHAP G-3-P

3

4

5

O

(^123456) F-1,6-bisP

(^123456)

CH^2 F-6-P

OH O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

ATP

ADP

CH^2

OPO

2- (^3) O H

HO

OH

H

OH

H

CH^2

OPO

2- 3

CH^2

OPO

2- (^3) O

CH^2

OH H

HC

OH CH^2

OPO

2- 3

DHAP G-3-P

3

4

5

O

(^123456) F-1,6-bisP

(^123456)

F-6-P p. 25

Reaction 4: Aldolase^ Reaction 4:

Aldolase or Fructose-1,6-BisP glyceraldehyde-3-P lyase

CleavageCleavage

Δ G^ Δ G

o^ o ’ = +23.9 kJ/mol= +23.9 kJ/mol’

Δ G = - Δ G =

-0.23 kJ/mol0.23 kJ/mol

Aldol Cleavage in Glycolysis

(Reaction No. 4)

CHCH CC

OPOP 2 2

OO

CC

HOHO

HH

CC RestRest

HH

OO

HH

CC RestRest

HH

OO

β α

C^ C

OO

CC

HOHO

HH

CHCH HH

OPOP 2 2

C^

O R^1 C R^2

R^3 C^

O R^4 R^5

H

C^

O R^1 C R^2

R^3

+^

C^

O

R^5

R^4

C^

O R^1 C R^2

R^3 H

Requirements for cleavage: C-OH must be

β^ to carbonyl carbon

H

H

p. 27

Aldol Cleavage in^ Aldol

Cleavage in Glycolysis

Glycolysis

α β

p. 27

Reverse Reaction (Aldol

Aldol Condensation

Condensation)

Requirements for condensation: H on C that is

α^ to carbonyl carbon on substrate 1 (C-H acidic)

and need for carbonyl group on substrate 2

C^

O R^1 C R^2

R^3 H

C^

O R^1 C R^2

R^3

C^

O R^1 C R^2

R^3

Resonance stabilized

C^

O

R^5

R^4

C^

O R^1 C R^2

R^3 C^

OH R^4 R^5

Substrate 1

Substrate 2

H

H

AldolaseAldolaseo^ o Δ G^ ’= + 23.9 kJ/mol= + 23.9 kJ/mol Δ G’

F-1,6-BP

DHAPDHAPG3PG3P

How can we forcethis reaction to go

forward?? Le Chatelier's

Principle

PFK-PFK

-1^1

AldolaseAldolase

F6PF6P

Δ G^ Δ G

o^ o ’== -’

- 14.2 kJ/mol14.2 kJ/mol Δ G = -^ Δ G = - 18.8 kJ/mol18.8 kJ/mol

Δ G^ Δ G

o^ o ’= + 23.9 kJ/mol= + 23.9 kJ/mol’

F-1,6-BP Common IntermediateCommon Intermediate

DHAPDHAPG3PG3P

PFK-PFK

-1^1

AldolaseAldolase

Δ G^ Δ G

o^ o ’== -’

- 14.2 kJ/mol14.2 kJ/mol Δ G = -^ Δ G = - 18.8 kJ/mol18.8 kJ/mol

Δ G^ Δ G

o^ o ’= + 23.9 kJ/mol= + 23.9 kJ/mol’

HexokinaseHexokinase

Δ G^ Δ G

o^ o ’== -’

- 16.6 kJ/mol16.6 kJ/mol Δ G = -^ Δ G = - 24.8 kJ/mol24.8 kJ/mol

oo ΔΔ GG ’’= + 1.7 kJ/mol= + 1.7 kJ/mol Δ G = -^ Δ G =

- 2.9 kJ/mol2.9 kJ/mol

Phosphogluco isomerasePhosphogluco

isomerase

F-1,6-BP

F6PF6P

DHAPDHAPG3PG3P