Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
MATH 225N MATH Statistic Final (NEWEST 2024) MATH 225N MATH Statistic Final (NEWEST 2024) MATH 225N MATH Statistic Final (NEWEST 2024)
Typology: Exams
1 / 91
Afitnesscenterclaimsthatthemeanamountoftimethatapersonspendsatthegym
hypothesis,Ha,intermsoftheparameterμ.
H 0 :μ≠ 33 ;Ha:μ= 33 H 0 :μ= 33 ;Ha:μ≠ 33 H 0 :μ≥ 33 ;Ha:μ< 33 H 0 :μ≤ 33 ;Ha:μ> 33
Correctanswer:
Lettheparameterμ beusedtorepresentthemean.Thenulhypothesisisalways statedwithsomeform ofequality:equal(=),greaterthanorequalto(≥),orlessthan orequalto(≤).Therefore,inthiscase,thenulhypothesisH 0 isμ= 33 .The alternativehypothesisiscontradictorytothenulhypothesis,soHa isμ ≠ 33.
Theanswerchoicesbelowrepresentdifferenthypothesistests.Whichofthechoices areright-tailedtests?Selectalcorrectanswers.
AnswerExplanation
Correctanswer:
Remembertheformsofthehypothesistests.
werebuiltwithoutpermitswhen,infact,morethan 15 % ofthestructureswerebuilt
withoutpermits. Sointhiscase,theright-tailedtestsare:
• H 0 : X≤3.8,Ha: X > 3.
thatnomorethan 15 % ofstructuresinthecountywerebuiltwithoutpermits.
Thebuildinginspectorthinksthatnomorethan 15 % ofthestructuresinthecounty werebuiltwithoutpermitswhen,infact,nomorethan 15 % ofthestructuresrealywere builtwithoutpermits. Thebuildinginspectorthinksthatmorethan 15 % ofthestructuresinthecountywere builtwithoutpermitswhen,infact,morethan 15 % ofthestructuresrealywerebuilt withoutpermits. Thebuildinginspectorthinksthatmorethan 15 % ofthestructuresinthecountywere builtwithoutpermitswhen,infact,atmost 15 % ofthestructureswerebuiltwithout permits. Thebuildinginspectorthinksthatnomorethan 15 % ofthestructuresinthecounty werebuiltwithoutpermitswhen,infact,morethan 15 % ofthestructureswerebuilt withoutpermits.
Correctanswer:
ATypeIIerroristhedecisionnottorejectthenulhypothesiswhen,infact,itisfalse.In
thiscase,theTypeIIerroriswhenthebuildinginspectorthinksthatnomore
builtwithoutpermitswhen,infact,atmost 15 % ofthestructureswerebuiltwithout
permits. $$Test statistic = −2.
than 15 % ofthestructureswerebuiltwithoutpermits.
Youranswer: Content attribution- Opens a dialog
Severalofhercustomersdonotbelieveher,sothechefdecidestodoahypothesistest,
weightofthesamplemeatbalsis3.7 ounces.Thechefknowsfrom experiencethatthe standarddeviationforhermeatbalweightis0.5 ounces. • H 0 :μ ≥ 4 ;Ha:μ< 4 • α=0.1 (significancelevel) Whatistheteststatistic(z-score)ofthisone-meanhypothesistest,roundedtotwo
decimalplaces?
Correctanswers:
Thehypotheseswerechosen,andthesignificancelevelwasdecidedon,sothenext stepinhypothesistestingistocomputetheteststatistic.Inthisscenario,thesample
knowsthestandarddeviationofthemeatbals,σ=0.5.Lastly,thechefiscomparing
• $0.041$0.
teststatistic:
So,theteststatisticforthishypothesistestisz 0 =−2.24.
ofz 0 = 1.74?(Donotroundyouranswer;computeyouranswerusingavaluefrom the tablebelow.) z1.51.61.71.81.90.000.9330.9450.9550.9640.9710.010.9340. 9460.9560.9650.9720.020.9360.9470.9570.9660.9730.030. 370.9480.9580.9660.9730.040.9380.9490.9590.9670.9740. 50.9390.9510.9600.9680.9740.060.9410.9520.9610.9690. 50.070.9420.9530.9620.9690.9760.080.9430.9540.9620. 0.9760.090.9440.9540.9630.9710. AnswerExplanation Correctanswers: Thep-valueistheprobabilityofanobservedvalueofz= 1.74 orgreaterifthenul
hypothesisistrue,becausethishypothesistestisright-tailed.Thisprobabilityisequalto
Astandardnormalcurvewithtwopointslabeledonthehorizontalaxis.Themeanis labeledat 0. 00 andanobservedvalueof 1. 74 islabeled.Theareaunderthecurveand totherightoftheobservedvalueisshaded.
whichistheareatotheleftofz=1.74.(StandardNormalTablesgiveareastothe left.)So,thep-valuewe'relookingforisp= 1 −0.959 =0.041.
Kenneth,acompetitorincupstacking,claimsthathisaveragestackingtime
of7. 8 secondsbasedon 11 trials.Atthe 4 % significancelevel,doesthedata
providesufficientevidencetoconcludethatKenneth'smeanstackingtimeisless
• H 0 :μ=8.2 se c o nds;Ha:μ< 8.2 seconds • α=0.04 (significancelevel) • z 0 =−1. • p=0.
significancelevelα= 0. 04.
Donotrejectthenulhypothesisbecausethep - value0.0401 isgreaterthanthe significancelevelα=0.. Rejectthenulhypothesisbecausethep - value0.0401 isgreaterthanthesignificance levelα= 0.. Rejectthenulhypothesisbecausethevalueofz isnegative. Rejectthenulhypothesisbecause|−1.75| > 0.04. Donotrejectthenulhypothesisbecause|−1.75 |>0.04.
Correctanswer:
resultsofthesampledataaresignificant.Thereissufficientevidencetoconclude
Ifα≤p-value,donotrejectH 0 .Theresultsofthesampledataarenotsignificant,so thereisnotsufficientevidencetoconcludethatthealternativehypothesis,Ha,maybe correct.Inthiscase,α= 0.04 islessthanorequaltop = 0.0401,sothedecisionis
tonotrejectthenulhypothesis.
medication.Ameliaisanurseatalargehospitalwhowouldliketoknowwhetherthe percentageisthesameforseniorcitizenpatientswhogotoherhospital.Sherandomly
them takeatleastoneprescriptionmedication.Whatarethenulandalternative hypothesesforthishypothesistest?
{H 0 :p=0.81Ha:p>0. {H 0 :p≠0.81Ha:p=0. {H 0 :p=0.81Ha:p<0. {H 0 :p=0.81Ha:p≠0.
Correctanswer:
Firstverifywhetheraloftheconditionshavebeenmet.Letp bethepopulation
proportionfortheseniorcitizenpatientstreatedatAmelia'shospitalwhotakeatleast oneprescriptionmedication.
failures,nq =n( 1 −p)=11.21,arebothgreaterthanorequalto 5.
SinceAmeliaistestingwhethertheproportionisthesame,thenulhypothesisis
Thenulandalternativehypothesesareshownbelow.
Aresearcherclaimsthattheproportionofcarswithmanualtransmissionisless
thosecars, 95 hadamanualtransmission.
Thefolowingisthesetupforthehypothesistest:
$$Test_Statistic=−0.
Findtheteststatisticforthishypothesistestforaproportion.Roundyouranswer
AnswerExplanation Correctanswers: Theproportionofsuccessesisp ^= 951000 =0.095.
Theteststatisticiscalculatedasfolows:
z=0.095−0.100.10⋅(1−0.10)1000−−−−−−−−√ z≈−0.
Amedicalresearcherclaimsthattheproportionofpeopletakingacertainmedication thatdevelopserioussideeffectsis 12 %.Totestthisclaim,arandom sampleof 900 peopletakingthemedicationistakenanditisdeterminedthat 9 3peoplehave experiencedserioussideeffects.. Thefolowingisthesetupforthishypothesistest: H 0 : p = 0. 12
Findthep-valueforthishypothesistestforaproportionandroundyouranswerto 3 decimalplaces.
$$P-value=0.
ThefolowingtablecanbeutilizedwhichprovidesareasundertheStandardNormal Curve: z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.
AnswerExplanation
Herearethestepsneededtocalculatethep-valueforahypothesistestforaproportion: 1 .Determineifthehypothesistestislefttailed,righttailed,ortwotailed. 2 .Computethevalueoftheteststatistic. 3 .Ifthehypothesistestislefttailed,thep-valuewilbetheareaunderthestandard normalcurvetotheleftoftheteststatistic z 0 Ifthetestisrighttailed,thep-valuewilbetheareaunderthestandardnormal curvetotherightoftheteststatistic z 0 Ifthetestistwotailed,thep-valuewilbetheareatotheleftof−| z 0 |plusthe areatotherightof| z 0 |underthestandardnormalcurve
Forthisexample,thetestisatwotailedtestandtheteststatistic,roundingtotwo
Thusthep-valueistheareaundertheStandardNormalcurvetotheleftofaz-scoreof
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.
From alookuptableoftheareaundertheStandardNormalcurve,thecorresponding areaisthen 2 ( 0. 062 )= 0. 124.
Aneconomistclaimsthattheproportionofpeoplewhoplantopurchaseafulyelectric
Totestthisclaim,arandom sampleof 750 peopleareaskediftheyplantopurchasea fulyelectricvehicleastheirnextcar Ofthese 750 people, 513 indicatethattheydo
plantopurchaseanelectricvehicle. Thefolowingisthesetupforthishypothesistest:
Inthisexample,thep-valuewasdeterminedtobe0.026.
Cometoaconclusionandinterprettheresultsforthishypothesistestforaproportion
ThedecisionistorejecttheNulHypothesis. Theconclusionisthatthereisenoughevidencetosupporttheclaim. ThedecisionistorejecttheNulHypothesis. Theconclusionisthatthereisenoughevidencetosupporttheclaim. ThedecisionistofailtorejecttheNulHypothesis. Theconclusionisthatthereisnotenoughevidencetosupporttheclaim. AnswerExplanation Correctanswer: Tocometoaconclusionandinterprettheresultsforahypothesistestforproportion usingtheP-ValueApproach,thefirststepistocomparethep-valuefrom thesample datawiththelevelofsignificance. Thedecisioncriteriaisthenasfolows:
hypothesisshouldberejected.
Whenwehavemadeadecisionaboutthenulhypothesis,itisimportanttowritea thoughtfulconclusionaboutthehypothesesintermsofthegivenproblem'sscenario. Assumingtheclaim isthenulhypothesis,theconclusionisthenoneofthefolowing:
enoughevidencetorejecttheclaim.
thereisnotenoughevidencetorejecttheclaim.
Assumingtheclaim isthealternativehypothesis,theconclusionisthenoneofthe folowing:
enoughevidencetosupporttheclaim.
thereisnotenoughevidencetosupporttheclaim.
significancetocometoaconclusionforthehypothesistest.
Sincethep-valueisgreaterthanthelevelofsignificance,theconclusionistorejectthe nullhypothesis.
proportion.Beckywasboredbecauseshehadalreadymasteredthetest,soshe decidedtoseeifthecoinshehadinherpocketwouldcomeupheadsortailsinatruly
heads 18 times. Beckyconductsaone-proportionhypothesistestatthe 5 % significancelevel,totest whetherthetrueproportionofheadsisdifferentfrom 50%.
Whichanswerchoiceshowsthecorrectnulandalternativehypothesesforthistest? H 0 :p =0.6;Ha: p >0.6,whichisaright-tailedtest. H 0 :p= 0.5 ;Ha: p < 0.5 ,whichisaleft-tailedtest. H 0 :p=0.6 ;Ha: p≠0.6,whichisatwo-tailedtest.
H 0 : p = 0.5 ;Ha: p≠0.5 ,whichisatwo-tailedtest.
Correctanswer:
Thenulhypothesisshouldbetrueproportion:H 0 :p=0.5.Beckywantstoknowif thetrueproportionofheadsisdifferentfrom 0.5.Thismeansthatwejustwanttotestif theproportionisnot0.5.So,thealternativehypothesisisHa:p≠0.5,whichisatwo-
tailedtest.
Johnownsacomputerrepairservice.Foreachcomputer,he
amountofmoneyJohnearnspercomputerisy= 50 + 45 x.Whatarethe independentanddependentvariables?Whatisthey-interceptandtheslope?
Theindependentvariable(x)istheamountoftimeJohnfixesacomputer.The dependentvariable(y)istheamount,indolars,Johnearnsforacomputer. Johnchargesaone-timefeeof$50 (thisiswhenx= 0 ),sothey-interceptis 50 .John earns$45 foreachhourheworks,sotheslopeis 45. Theindependentvariable(x)istheamount,indolars,Johnearnsforacomputer.The dependentvariable(y )istheamountoftimeJohnfixesacomputer. Johnchargesaone-timefeeof$45 (thisiswhenx= 0 ),sothey-interceptis 45 .John earns$50 foreachhourheworks,sotheslopeis 50. Theindependentvariable(x)istheamount,indolars,Johnearnsforacomputer.The dependentvariable(y )istheamountoftimeJohnfixesacomputer.
dependentvariable(y)istheamount,indolars,Johnearnsforacomputer. Johnchargesaone-timefeeof$ 50 (thisiswhenx= 0 ),sothey-interceptis 50. Johnearns$ 45 foreachhourheworks,sotheslopeis 45.
Johnchargesaone-timefeeof$50 (thisiswhenx= 0 ),sothey-interceptis 50 .John earns$45 foreachhourheworks,sotheslopeis 45. Theindependentvariable(x)istheamountoftimeJohnfixesacomputer.The dependentvariable(y)istheamount,indolars,Johnearnsforacomputer. Johnchargesaone-timefeeof$45 (thisiswhenx= 0 ),sothey-interceptis 45 .John earns$50 foreachhourheworks,sotheslopeis 50.
Correctanswer:
thevaluethatchanges.Hemayworkdifferentamountspercomputer,andhisearnings aredependentonhow manyhoursheworks.Thisiswhytheamount,indolars,John
They-interceptis 50 (b= 50 ).Thisishisone-timefee.Theslopeis 45 (a = 4 5 ).
Thisistheincreaseforeachhourheworks.
Arianakeepstrackoftheamountoftimeshestudiesandthescoreshegetsonher quizzes.Thedataareshowninthetablebelow.Whichofthescatterplotsbelow accuratelyrecordsthedata? Hoursstudying Quizscore 1 5 2 5
AscatterplothasahorizontalaxislabeledHoursstudyingfrom 0 to 6 inincrementsof 1 andaverticalaxislabeledQuizscorefrom 0 to 10 inincrementsof 2 .Thefolowing pointsareplotted:left-parenthesis 1 comma 5 right-parentheses;left-parenthesis 2 comma 5 right-parentheses;left-parenthesis 3 comma 7 right-parentheses;left- parenthesis 4 comma 9 right-parentheses;left-parenthesis 5 comma 9 right- parentheses.Alvaluesareapproximate.
AscatterplothasahorizontalaxislabeledHoursstudyingfrom 0 to 10 inincrementsof 2 andaverticalaxislabeledQuizscorefrom 0 to 6 inincrementsof 1 .Thefolowing pointsareplotted:left-parenthesis 5 comma 1 right-parentheses;left-parenthesis 5 comma 2 right-parentheses;left-parenthesis 7 comma 3 right-parentheses;left- parenthesis 9 comma 4 right-parentheses;left-parenthesis 9 comma 5 right- parentheses.Alvaluesareapproximate.