Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

physics formula sheet, Cheat Sheet of Life Sciences

topics covered include newton laws of motion and friction

Typology: Cheat Sheet

2021/2022

Uploaded on 11/06/2023

sarmad-alani-1
sarmad-alani-1 🇺🇸

1 document

Partial preview of the text

Download physics formula sheet and more Cheat Sheet Life Sciences in PDF only on Docsity!

P

P

h

h

y

y

s

s

i

i

c

c

s

s

F

F

o

o

r

r

m

m

u

u

l

l

a

a

S

S

h

h

e

e

e

e

t

t

Chapter 1: Introduction: The

Nature of Science and Physics

𝑥 =

−𝑏 ± √𝑏

2

− 4 𝑎𝑐

2 𝑎

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐸𝑎𝑟𝑡ℎ = 6. 38 × 10

6

𝑚

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐸𝑎𝑟𝑡ℎ = 5. 98 × 10

24

𝑘𝑔

𝑐 = 3. 00 × 10

8

𝑚/𝑠

𝐺 = 6. 673 × 10

− 11

𝑁𝑚

2

𝑘𝑔

2

𝑁

𝐴

= 6. 02 × 10

23

𝑘 = 1. 38 × 10

− 23

𝐽/𝐾

𝑅 = 8. 31

𝐽

𝑚𝑜𝑙 ⋅ 𝐾

𝜎 = 5. 67 × 10

− 8

𝑊/(𝑚

2

⋅ 𝐾)

𝑘 = 8. 99 × 10

9

𝑁 ⋅ 𝑚

2

/𝐶

2

𝑞

𝑒

= − 1. 60 × 10

− 19

𝐶

𝜖

0

= 8. 85 × 10

− 12

𝐶

2

/(𝑁 ⋅ 𝑚

2

)

𝜇

0

= 4π × 10

− 7

𝑇 ⋅ 𝑚/𝐴

ℎ = 6. 63 × 10

− 34

𝐽 ⋅ 𝑠

𝑚

𝑒

= 9. 11 × 10

− 31

𝑘𝑔

𝑚

𝑝

= 1. 6726 × 10

− 27

𝑘𝑔

𝑚

𝑛

= 1. 6749 × 10

− 27

𝑘𝑔

𝑎𝑚𝑢 = 1. 6605 × 10

− 27

𝑘𝑔

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 = 1000

𝑘𝑔

𝑚

3

Chapter 2: Kinematics

𝛥𝑥 = 𝑥

𝑓

− 𝑥

0

𝛥𝑡 = 𝑡

𝑓

− 𝑡

0

𝑣 =

𝛥𝑥

𝛥𝑡

=

𝑥

𝑓

− 𝑥

0

𝑡

𝑓

− 𝑡

0

𝑎 =

𝛥𝑣

𝛥𝑡

=

𝑣

𝑓

− 𝑣

0

𝑡

𝑓

− 𝑡

0

𝑥 = 𝑥

0

+ 𝑣𝑡

𝑣 =

𝑣

0

+ 𝑣

𝑣 = 𝑣

0

+ 𝑎𝑡

𝑥 = 𝑥

0

+ 𝑣

0

𝑡 +

𝑎𝑡

2

𝑣

2

= 𝑣

0

2

+ 2 𝑎(𝑥 − 𝑥

0

)

𝑔 = 9. 80

𝑚

𝑠

2

Chapter 3: Two-Dimensional

Kinematics

𝐴

𝑥

= 𝐴 𝑐𝑜𝑠 𝜃

𝐴

𝑦

= 𝐴 𝑠𝑖𝑛 𝜃

𝑅

𝑥

= 𝐴

𝑥

+ 𝐵

𝑥

𝑅

𝑦

= 𝐴

𝑦

+ 𝐵

𝑦

𝑅 = √𝑅

𝑥

2

+ 𝑅

𝑦

2

𝜃 = 𝑡𝑎𝑛

− 1

𝑅

𝑦

𝑅

𝑥

ℎ =

𝑣

0 𝑦

2

2 𝑔

𝑅 =

𝑣

0

2

𝑠𝑖𝑛 2 𝜃

0

𝑔

𝑣

𝑥

= 𝑣 𝑐𝑜𝑠 𝜃

𝑣

𝑦

= 𝑣 𝑠𝑖𝑛 𝜃

𝑣 =

𝑣

𝑥

2

+ 𝑣

𝑦

2

𝜃 = 𝑡𝑎𝑛

− 1

𝑣

𝑦

𝑣

𝑥

Chapter 4: Dynamics: Forces

and Newton’s Laws of Motion

𝐹

𝑛𝑒𝑡

= 𝑚𝑎

𝑤 = 𝑚𝑔

Chapter 5: Further Applications

of Newton’s Laws: Friction,

Drag, and Elasticity

𝑓

𝑠

≤ 𝜇

𝑠

𝑁

𝑓

𝑘

= 𝜇

𝑘

𝑁

𝐹

𝐷

=

𝐶𝜌𝐴𝑣

2

𝐹

𝑠

= 6 𝜋𝜂𝑟𝑣

𝐹 = 𝑘𝛥𝑥

𝛥𝐿 =

1 𝐹

𝑌𝐴

𝐿

0

𝑠𝑡𝑟𝑒𝑠𝑠 =

𝐹

𝐴

𝑠𝑡𝑟𝑎𝑖𝑛 =

𝛥𝐿

𝐿

0

𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑌 × 𝑠𝑡𝑟𝑎𝑖𝑛

𝛥𝑥 =

1 𝐹

𝑆𝐴

𝐿

0

𝛥𝑉 =

1 𝐹

𝐵𝐴

𝑉

0

Chapter 6: Uniform Circular

Motion and Gravitation

𝛥𝜃 =

𝛥𝑠

𝑟

2 𝜋 𝑟𝑎𝑑 = 360° = 1 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝜔 =

𝛥𝜃

𝛥𝑡

𝑣 = 𝑟𝜔

𝑎

𝐶

=

𝑣

2

𝑟

𝑎

𝐶

= 𝑟𝜔

2

𝐹

𝐶

= 𝑚𝑎

𝐶

𝐹

𝐶

=

𝑚𝑣

2

𝑟

𝑡𝑎𝑛 𝜃 =

𝑣

2

𝑟𝑔

𝐹

𝐶

= 𝑚𝑟𝜔

2

𝐹 = 𝐺

𝑚𝑀

𝑟

2

𝑔 =

𝐺𝑀

𝑟

2

𝑇

1

2

𝑇

2

2

=

𝑟

1

3

𝑟

2

3

𝑇

2

=

4 𝜋

2

𝐺𝑀

𝑟

3

𝑟

3

𝑇

2

=

𝐺

4 𝜋

2

𝑀

Chapter 7: Work, Energy, and

Energy Resources

𝑊 = 𝑓𝑑 𝑐𝑜𝑠 𝜃

𝐾𝐸 =

𝑚𝑣

2

𝑊

𝑛𝑒𝑡

=

𝑚𝑣

𝑓

2

𝑚𝑣

0

2

𝑃𝐸

𝑔

= 𝑚𝑔ℎ

𝑃𝐸

𝑠

=

𝑘𝑥

2

𝐾𝐸

0

+ 𝑃𝐸

0

= 𝐾𝐸

𝑓

+ 𝑃𝐸

𝑓

𝐾𝐸

0

+ 𝑃𝐸

0

+ 𝑊

𝑛𝑐

= 𝐾𝐸

𝑓

+ 𝑃𝐸

𝑓

𝐸𝑓𝑓 =

𝑊

𝑜𝑢𝑡

𝐸

𝑖𝑛

𝑃 =

𝑊

𝑡

Chapter 8: Linear Momentum

and Collisions

𝑝 = 𝑚𝑣

𝛥𝑝 = 𝐹

𝑛𝑒𝑡

𝛥𝑡

𝑝

0

= 𝑝

𝑓

𝑚

1

𝑣

01

+ 𝑚

2

𝑣

02

= 𝑚

1

𝑣

𝑓 1

+ 𝑚

2

𝑣

𝑓 2

𝑚

1

𝑣

01

2

+

𝑚

2

𝑣

02

2

=

𝑚

1

𝑣

𝑓 1

2

+

𝑚

2

𝑣

𝑓 2

2

𝑚

1

𝑣

1

= 𝑚

1

𝑣

1

𝑐𝑜𝑠 𝜃

1

+ 𝑚

2

𝑣

2

𝑐𝑜𝑠 𝜃

2

0 = 𝑚

1

𝑣

1

𝑠𝑖𝑛 𝜃

1

+ 𝑚

2

𝑣

2

𝑠𝑖𝑛 𝜃

2

𝑚𝑣

1

2

=

𝑚𝑣

1

+

𝑚𝑣

2

+ 𝑚𝑣

1

𝑣

2

𝑐𝑜𝑠(𝜃

1

− 𝜃

2

)

𝑎 =

𝑣

𝑒

𝑚

𝛥𝑚

𝛥𝑡

− 𝑔

𝑣

𝑐𝑚

=

𝑣

1

𝑚

1

+ 𝑣

2

𝑚

2

𝑚

1

+ 𝑚

2

Chapter 9: Statics and Torque

𝜏 = 𝑟𝐹 𝑠𝑖𝑛 𝜃

𝑟

= 𝑟 𝑠𝑖𝑛 𝜃

𝑀𝐴 =

𝐹

𝑜

𝐹

𝑖

=

𝑙

𝑖

𝑙

𝑜

𝑙

𝑖

𝐹

𝑖

= 𝑙

𝑜

𝐹

𝑜

Chapter 10: Rotational Motion

and Angular Momentum

𝜔 =

𝛥𝜃

𝛥𝑡

𝑣 = 𝑟𝜔

𝛼 =

𝛥𝜔

𝛥𝑡

𝑎

𝑡

=

𝛥𝑣

𝛥𝑡

𝑎

𝑡

= 𝑟𝛼

𝜃 = 𝜔𝑡

𝜔 = 𝜔

0

+ 𝛼𝑡

𝜃 = 𝜔

0

𝑡 +

𝛼𝑡

2

𝜔

2

= 𝜔

0

2

+ 2 𝛼𝜃

𝜔 =

𝜔

0

+ 𝜔

𝑛𝑒𝑡 𝜏 = 𝐼𝛼

Hoop about cylinder axis: 𝐼 = 𝑀𝑅

2

Hoop about any diameter: 𝐼 =

𝑀𝑅

2

2

Ring: 𝐼 =

𝑀

2

(

𝑅

1

2

+ 𝑅

2

2

)

Solid cylinder (or disk) about

cylinder axis: 𝐼 =

𝑀𝑅

2

2

Solid cylinder (or disk) about

central diameter: 𝐼 =

𝑀𝑅

2

4

+

𝑀ℓ

2

12

Thin rod about axis through center

⊥ to length: 𝐼 =

𝑀ℓ

2

12

Thin rod about axis through one end

⊥ to length: 𝐼 =

𝑀ℓ

2

3

Solid sphere: 𝐼 =

2 𝑀𝑅

2

5

Thin spherical shell: 𝐼 =

2 𝑀𝑅

2

3

Slab about ⊥ axis through center:

𝐼 =

𝑀(𝑎

2

+𝑏

2

)

12

𝑛𝑒𝑡 𝑊 = (𝑛𝑒𝑡 𝜏)𝜃

𝐾𝐸

𝑟𝑜𝑡

=

𝐼𝜔

2

𝐿 = 𝐼𝜔

𝑛𝑒𝑡 𝜏 =

𝛥𝐿

𝛥𝑡

Chapter 11: Fluid Statics

𝜌 =

𝑚

𝑉

𝑃 =

𝐹

𝐴

𝑃

𝑎𝑡𝑚

= 1. 01 × 10

5

𝑃𝑎

𝑃 = 𝜌𝑔ℎ

𝑃

2

= 𝑃

1

+ 𝜌𝑔ℎ

𝐹

1

𝐴

1

=

𝐹

2

𝐴

2

𝐹

𝐵

= 𝑤

𝑓𝑙

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑑 =

𝜌

𝑜𝑏𝑗

𝜌

𝑓𝑙

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =

𝜌

𝜌

𝑤

𝛾 =

𝐹

𝐿

𝑃 =

4 𝛾

𝑟

ℎ =

2 𝛾 𝑐𝑜𝑠 𝜃

𝜌𝑔𝑟

Chapter 12: Fluid Dynamics

and Its Biological Medical

Applications

𝑄 =

𝑉

𝑡

𝑄 = 𝐴𝑣

𝐴

1

𝑣

1

= 𝐴

2

𝑣

2

𝑛

1

𝐴

1

𝑣

1

= 𝑛

2

𝐴

2

𝑣

2

𝑃

1

+

𝜌𝑣

1

2

+ 𝜌𝑔ℎ

1

= 𝑃

2

+

𝜌𝑣

2

2

+ 𝜌𝑔ℎ

2

(Δ𝑃 + Δ

𝜌𝑣

2

+ Δ𝜌𝑔ℎ) 𝑄 = 𝑝𝑜𝑤𝑒𝑟

𝑣

1

= √ 2 𝑔ℎ

𝜂 =

𝐹𝐿

𝑣𝐴

𝑄 =

𝑃

2

− 𝑃

1

𝑅

𝑅 =

8 𝜂𝑙

𝜋𝑟

4

𝑄 =

(𝑃

2

− 𝑃

1

)𝜋𝑟

4

8 𝜂𝑙

𝑁

𝑅

=

2 𝜌𝑣𝑟

𝜂

𝑁

𝑅

=

𝜌𝑣𝐿

𝜂

𝑥

𝑟𝑚𝑠

= √ 2 𝐷𝑡

Chapter 13: Temperature,

Kinetic Theory, and the Gas

Laws

𝑇

(

°𝐹

)

=

𝑇

(

°𝐶

)

𝑇(𝐾) = 𝑇(°𝐶) + 273. 15

𝛥𝐿 = 𝛼𝐿𝛥𝑇

𝛥𝐴 = 2 𝛼𝐴𝛥𝑇

𝛥𝑉 = 𝛽𝑉𝛥𝑇

𝛽 ≈ 3 𝛼

𝑃𝑉 = 𝑁𝑘𝑇

𝑘 = 1. 38 × 10

− 23

𝐽/𝐾

𝑁

𝐴

= 6. 02 × 10

23

𝑚𝑜𝑙

− 1

𝑃𝑉 = 𝑛𝑅𝑇

𝑅 = 8. 31

𝐽

𝑚𝑜𝑙 ⋅ 𝐾

𝑃𝑉 =

𝑁𝑚𝑣

2

𝐾𝐸 =

𝑚𝑣

2

=

𝑘𝑇

𝑣

𝑟𝑚𝑠

=

3 𝑘𝑇

𝑚

% 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦

=

𝑣𝑎𝑝𝑜𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑝𝑜𝑟 𝑑𝑒𝑛𝑎𝑠𝑖𝑡𝑦

× 100%

Chapter 14: Heat and Heat

Transfer Methods

1. 000 𝑘𝑐𝑎𝑙 = 4186 𝐽

𝑄 = 𝑚𝑐𝛥𝑇

𝑄 = 𝑚𝐿

𝑓

𝑄 = 𝑚𝐿

𝑣

𝑄

𝑡

=

𝑘𝐴(𝑇

2

− 𝑇

1

)

𝑑

𝑄

𝑡

= 𝜎𝑒𝐴𝑇

4

𝜎 = 5. 67 × 10

− 8

𝐽

𝑠 ⋅ 𝑚

2

⋅ 𝐾

4

𝑄

𝑛𝑒𝑡

𝑡

= 𝜎𝑒𝐴(𝑇

2

4

− 𝑇

1

4

)

Chapter 15: Thermodynamics

𝑈 =

𝑁𝑘𝑇

𝛥𝑈 = 𝑄 − 𝑊

𝑊 = 𝑃𝛥𝑉 (𝑖𝑠𝑜𝑏𝑎𝑟𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)

Δ𝑈 = 𝑄 − 𝑃Δ𝑉

𝑊 = 0 (𝑖𝑠𝑜𝑐ℎ𝑜𝑟𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)

Δ𝑈 = 𝑄

𝑄 = 𝑊 (𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)

Δ𝑈 = 0

𝑄 = 0

(

𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

)

Δ𝑈 = −𝑊

𝐸𝑓𝑓 =

𝑊

𝑄

𝐸𝑓𝑓 = 1 −

𝑄

𝑐

𝑄

(

𝑐𝑦𝑐𝑙𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

)

𝐸𝑓𝑓

𝐶

= 1 −

𝑇

𝑐

𝑇

𝐶𝑂𝑃

ℎ𝑝

=

𝑄

𝑊

𝐶𝑂𝑃

𝑟𝑒𝑓

= 𝐶𝑂𝑃

ℎ𝑝

− 1 =

𝑄

𝑐

𝑊

𝐸𝐸𝑅 =

𝑄

𝑐

𝑡

1

𝑄

𝑡

2

𝛥𝑆 =

𝑄

𝑇

𝛥𝑆

𝑡𝑜𝑡

=

𝑄

𝑇

+

𝑄

𝑐

𝑇

𝑐

= 0

𝑊

𝑢𝑛𝑎𝑣𝑎𝑖𝑙

= 𝛥𝑆 ⋅ 𝑇

0

𝑆 = 𝑘 𝑙𝑛 𝑊

𝑘 = 1. 38 × 10

− 23

𝐽/𝐾

Chapter 16: Oscillatory Motion

and Waves

𝑓 =

𝑇

𝑣 =

𝜆

𝑇

= 𝑓𝜆

𝐹 = −𝑘𝑥

𝑃𝐸

𝑒𝑙

=

𝑘𝑥

2

𝑇 = 2 𝜋√

𝑚

𝑘

𝑓 =

2 𝜋

𝑘

𝑚

𝑥

(

𝑡

)

= 𝑋 𝑐𝑜𝑠 (

2 𝜋𝑡

𝑇

)

𝑣(𝑡) = −𝑣

𝑚𝑎𝑥

𝑠𝑖𝑛 (

2 𝜋𝑡

𝑇

)

𝑣

𝑚𝑎𝑥

=

2 𝜋𝑋

𝑇

= 𝑋

𝑘

𝑚

𝑎(𝑡) = −

𝑘𝑋

𝑚

𝑐𝑜𝑠 (

2 𝜋𝑡

𝑇

)

𝑣

𝑠𝑡𝑟𝑖𝑛𝑔

= √

𝐹

𝑚/𝐿

𝑣

𝑤

= ( 331

𝑚

𝑠

)

𝑇

273 𝐾

𝐼 =

𝑃

𝐴

𝐴

𝑠𝑝ℎ𝑒𝑟𝑒

= 4 𝜋𝑟

2

𝐼 =

(

𝛥𝑝

)

2

2 𝜌𝑣

𝑤

Chapter 17: Physics of Hearing

𝛽 =

(

10 𝑑𝐵

)

𝑙𝑜𝑔 (

𝐼

𝐼

0

)

𝑓

𝑜

= 𝑓

𝑠

(

𝑣

𝑤

± 𝑣

𝑜

𝑣

𝑤

∓ 𝑣

𝑠

)

𝑓

𝐵

= |𝑓

1

− 𝑓

2

|

𝑓

𝑛

= 𝑛 (

𝑣

𝑤

2 𝐿

)

𝑓

𝑛

= 𝑛 (

𝑣

𝑤

4 𝐿

)

𝑍 = 𝜌𝑣

𝑎 =

(

𝑍

2

− 𝑍

1

)

2

(𝑍

1

+ 𝑍

2

)

2

Chapter 18: Electric Charge

and Electric Field

|𝑞

𝑒

| = 1. 60 × 10

− 19

𝐶

𝐹 = 𝑘

|𝑞

1

𝑞

2

|

𝑟

2

𝐸 = 𝐹/𝑞

𝐸 = 𝑘

|

𝑄

|

𝑟

2

Chapter 19: Electric Potential

and Electric Energy

𝑉 =

𝑃𝐸

𝑞

𝛥𝑃𝐸 = 𝑞𝛥𝑉

𝑊 = 𝑞𝑉

𝐴𝐵

𝐸 =

𝑉

𝐴𝐵

𝑑

𝐸 = −

𝛥𝑉

𝛥𝑠

𝑉 =

𝑘𝑄

𝑟

𝐶 =

𝑄

𝑉

𝐶 = 𝜖

0

𝐴

𝑑

𝜖

0

= 8. 85 × 10

− 12

𝐹

𝑚

𝐶 = 𝜅𝜖

0

𝐴

𝑑

𝐸

𝑐𝑎𝑝

=

𝑄𝑉

=

𝐶𝑉

2

=

𝑄

2

2 𝐶

Chapter 20: Electric Current,

Resistance, and Ohm’s Law

𝐼 =

𝛥𝑄

𝛥𝑡

𝐼 = 𝑛𝑞𝐴𝑣

𝑑

𝑉 = 𝐼𝑅

𝑅 =

𝜌𝐿

𝐴

𝜌 = 𝜌

0

( 1 + 𝛼𝛥𝑇)

𝑅 = 𝑅

0

( 1 + 𝛼𝛥𝑇)

𝑃 = 𝐼𝑉 =

𝑉

2

𝑅

= 𝐼

2

𝑅

𝑃

𝑎𝑣𝑒

=

𝐼

0

𝑉

0

𝐼

𝑟𝑚𝑠

=

𝐼

0

√ 2

𝑉

𝑟𝑚𝑠

=

𝑉

0

√ 2

Chapter 21: Circuits,

Bioelectricity, and DC

Instruments

𝑅

𝑆

= 𝑅

1

+ 𝑅

2

+ 𝑅

3

+ ⋯

𝑅

𝑃

=

𝑅

1

+

𝑅

2

+

𝑅

3

+ ⋯

𝑉 = 𝑒𝑚𝑓 − 𝐼𝑟

𝑉 = 𝑒𝑚𝑓 ( 1 − 𝑒

𝑡

𝑅𝐶 )

𝜏 = 𝑅𝐶

𝑉 = 𝑉

0

𝑒

𝑡

𝑟𝐶

Chapter 22: Magnetism

𝐹 = 𝑞𝑣𝐵 𝑠𝑖𝑛 𝜃

𝑟 =

𝑚𝑣

𝑞𝐵

𝜖 = 𝐵𝑙𝑣

𝐹 = 𝐼𝐿𝐵 𝑠𝑖𝑛 𝜃

𝜏 = 𝑁𝐼𝐴𝐵 𝑠𝑖𝑛 𝜃

𝐵 =

𝜇

0

𝐼

2 𝜋𝑟

𝐵 =

𝜇

0

𝐼

2 𝑅

𝐵 = 𝜇

0

𝑛𝐼

𝐹

𝑙

=

𝜇

0

𝐼

1

𝐼

2

2 𝜋𝑟

Chapter 23: Electromagnetic

Induction, AC Circuits, and

Electrical Technologies

𝛷 = 𝐵𝐴 𝑐𝑜𝑠 𝜃

𝑒𝑚𝑓 = −𝑁

𝛥𝛷

𝛥𝑡

𝑒𝑚𝑓 = 𝑣𝐵𝐿

𝑒𝑚𝑓 = 𝑁𝐴𝐵𝜔 𝑠𝑖𝑛 𝜔𝑡

𝑉

𝑆

𝑉

𝑃

=

𝑁

𝑆

𝑁

𝑃

=

𝐼

𝑃

𝐼

𝑆

𝑒𝑚𝑓

1

= −𝑀

𝛥𝐼

2

𝛥𝑡

𝑒𝑚𝑓 = −𝐿

𝛥𝐼

𝛥𝑡

𝐿 = 𝑁

𝛥𝛷

𝛥𝐼

𝐿 =

μ

0

𝑁

2

𝐴

𝐸

𝑖𝑛𝑑

=

𝐿𝐼

2

𝐼 = 𝐼

0

( 1 − 𝑒

𝑡

𝜏 )

𝜏 =

𝐿

𝑅

𝐼 = 𝐼

0

𝑒

𝑡

𝜏

𝐼 =

𝑉

𝑋

𝐿

𝑋

𝐿

= 2 𝜋𝑓𝐿

𝐼 =

𝑉

𝑋

𝐶

𝑋

𝐶

=

2 𝜋𝑓𝐶

𝐼

0

=

𝑉

0

𝑍

𝑜𝑟 𝐼

𝑟𝑚𝑠

=

𝑉

𝑟𝑚𝑠

𝑍

𝑍 = √𝑅

2

+ (𝑋

𝐿

− 𝑋

𝐶

)

2

𝑓

0

=

2 𝜋√𝐿𝐶

𝑐𝑜𝑠 𝜙 =

𝑅

𝑍

𝑃

𝑎𝑣𝑒

= 𝐼

𝑟𝑚𝑠

𝑉

𝑟𝑚𝑠

𝑐𝑜𝑠 𝜙

Chapter 24: Electromagnetic

Waves

𝑐 =

𝜇

0

𝜖

0

𝐸

𝐵

= 𝑐

𝑐 = 𝑓𝜆

𝐼

𝑎𝑣𝑒

=

𝑐𝜖

0

𝐸

0

2

𝐼

𝑎𝑣𝑒

=

𝑐𝐵

0

2

2 𝜇

0

𝐼

𝑎𝑏𝑒

=

𝐸

0

𝐵

0

2 𝜇

0

Chapter 25: Geometric Optics

𝜃

𝑖

= 𝜃

𝑟

𝑛 =

𝑐

𝑣

𝑛

1

𝑠𝑖𝑛 𝜃

1

= 𝑛

2

𝑠𝑖𝑛 𝜃

2

𝜃

𝑐

= 𝑠𝑖𝑛

− 1

𝑛

2

𝑛

1

𝑃 =

𝑓

𝑓

=

𝑑

𝑜

+

𝑑

𝑖

𝑚 =

𝑖

𝑜

= −

𝑑

𝑖

𝑑

𝑜

𝑓 =

𝑅

Chapter 26: Vision and Optical

Instruments

𝑃 =

𝑑

𝑜

+

𝑑

𝑖

𝑚 = 𝑚

𝑜

𝑚

𝑒

𝑁𝐴 = 𝑛 𝑠𝑖𝑛 𝛼

𝑓/# =

𝑓

𝐷

2 𝑁𝐴

𝑑

𝑖

= 𝑓

𝑜

𝑀 =

𝑓

𝑜

𝑓

𝑒

Chapter 27: Wave Optics

𝜆

𝑛

=

𝜆

𝑛

sin 𝜃 = 𝑚

𝜆

𝑑

𝑠𝑖𝑛 𝜃 = (𝑚 +

)

𝜆

𝑑

𝑠𝑖𝑛 𝜃 = 𝑚

𝜆

𝑊

𝜃 = 1. 22

𝜆

𝐷

2 𝑡 =

𝜆

𝑛

2 𝑡 = 𝜆

𝑛

I = ½ I 0

𝐼 = 𝐼

0

𝑐𝑜𝑠

2

𝜃

𝑡𝑎𝑛 𝜃

𝑏

=

𝑛

2

𝑛

1

Chapter 28: Special Relativity

𝛥𝑡 =

𝛥𝑡

0

1 −

𝑣

2

𝑐

2

𝛾 =

1 −

𝑣

2

𝑐

2

𝐿 = 𝐿

0

1 −

𝑣

2

𝑐

2

𝑣

𝐿𝐺

=

𝑣

𝐿𝑇

+ 𝑣

𝑇𝐺

1 +

𝑣

𝐿𝑇

𝑣

𝑇𝐺

𝑐

2

𝜆

𝑜𝑏𝑠

= 𝜆

𝑠

1 +

𝑢

𝑐

1 −

𝑢

𝑐

𝑓

𝑜𝑏𝑠

= 𝑓

𝑠

1 −

𝑢

𝑐

1 +

𝑢

𝑐

𝑝 =

𝑚𝑣

1 −

𝑣

2

𝑐

2

𝐸 =

𝑚𝑐

2

1 −

𝑣

2

𝑐

2

𝐸

0

= 𝑚𝑐

2

𝐾𝐸

𝑟𝑒𝑙

=

𝑚𝑐

2

1 −

𝑣

2

𝑐

2

− 𝑚𝑐

2

𝐸

2

=

(

𝑝𝑐

)

2

+

(

𝑚𝑐

2

)

2