Download physics formula sheet and more Cheat Sheet Life Sciences in PDF only on Docsity!
P
P
h
h
y
y
s
s
i
i
c
c
s
s
F
F
o
o
r
r
m
m
u
u
l
l
a
a
S
S
h
h
e
e
e
e
t
t
Chapter 1: Introduction: The
Nature of Science and Physics
𝑥 =
−𝑏 ± √𝑏
2
− 4 𝑎𝑐
2 𝑎
𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐸𝑎𝑟𝑡ℎ = 6. 38 × 10
6
𝑚
𝑀𝑎𝑠𝑠 𝑜𝑓 𝐸𝑎𝑟𝑡ℎ = 5. 98 × 10
24
𝑘𝑔
𝑐 = 3. 00 × 10
8
𝑚/𝑠
𝐺 = 6. 673 × 10
− 11
𝑁𝑚
2
𝑘𝑔
2
𝑁
𝐴
= 6. 02 × 10
23
𝑘 = 1. 38 × 10
− 23
𝐽/𝐾
𝑅 = 8. 31
𝐽
𝑚𝑜𝑙 ⋅ 𝐾
⁄
𝜎 = 5. 67 × 10
− 8
𝑊/(𝑚
2
⋅ 𝐾)
𝑘 = 8. 99 × 10
9
𝑁 ⋅ 𝑚
2
/𝐶
2
𝑞
𝑒
= − 1. 60 × 10
− 19
𝐶
𝜖
0
= 8. 85 × 10
− 12
𝐶
2
/(𝑁 ⋅ 𝑚
2
)
𝜇
0
= 4π × 10
− 7
𝑇 ⋅ 𝑚/𝐴
ℎ = 6. 63 × 10
− 34
𝐽 ⋅ 𝑠
𝑚
𝑒
= 9. 11 × 10
− 31
𝑘𝑔
𝑚
𝑝
= 1. 6726 × 10
− 27
𝑘𝑔
𝑚
𝑛
= 1. 6749 × 10
− 27
𝑘𝑔
𝑎𝑚𝑢 = 1. 6605 × 10
− 27
𝑘𝑔
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 = 1000
𝑘𝑔
𝑚
3
Chapter 2: Kinematics
𝛥𝑥 = 𝑥
𝑓
− 𝑥
0
𝛥𝑡 = 𝑡
𝑓
− 𝑡
0
𝑣 =
𝛥𝑥
𝛥𝑡
=
𝑥
𝑓
− 𝑥
0
𝑡
𝑓
− 𝑡
0
𝑎 =
𝛥𝑣
𝛥𝑡
=
𝑣
𝑓
− 𝑣
0
𝑡
𝑓
− 𝑡
0
𝑥 = 𝑥
0
+ 𝑣𝑡
𝑣 =
𝑣
0
+ 𝑣
𝑣 = 𝑣
0
+ 𝑎𝑡
𝑥 = 𝑥
0
+ 𝑣
0
𝑡 +
𝑎𝑡
2
𝑣
2
= 𝑣
0
2
+ 2 𝑎(𝑥 − 𝑥
0
)
𝑔 = 9. 80
𝑚
𝑠
2
Chapter 3: Two-Dimensional
Kinematics
𝐴
𝑥
= 𝐴 𝑐𝑜𝑠 𝜃
𝐴
𝑦
= 𝐴 𝑠𝑖𝑛 𝜃
𝑅
𝑥
= 𝐴
𝑥
+ 𝐵
𝑥
𝑅
𝑦
= 𝐴
𝑦
+ 𝐵
𝑦
𝑅 = √𝑅
𝑥
2
+ 𝑅
𝑦
2
𝜃 = 𝑡𝑎𝑛
− 1
𝑅
𝑦
𝑅
𝑥
ℎ =
𝑣
0 𝑦
2
2 𝑔
𝑅 =
𝑣
0
2
𝑠𝑖𝑛 2 𝜃
0
𝑔
𝑣
𝑥
= 𝑣 𝑐𝑜𝑠 𝜃
𝑣
𝑦
= 𝑣 𝑠𝑖𝑛 𝜃
𝑣 =
√
𝑣
𝑥
2
+ 𝑣
𝑦
2
𝜃 = 𝑡𝑎𝑛
− 1
𝑣
𝑦
𝑣
𝑥
Chapter 4: Dynamics: Forces
and Newton’s Laws of Motion
𝐹
𝑛𝑒𝑡
= 𝑚𝑎
𝑤 = 𝑚𝑔
Chapter 5: Further Applications
of Newton’s Laws: Friction,
Drag, and Elasticity
𝑓
𝑠
≤ 𝜇
𝑠
𝑁
𝑓
𝑘
= 𝜇
𝑘
𝑁
𝐹
𝐷
=
𝐶𝜌𝐴𝑣
2
𝐹
𝑠
= 6 𝜋𝜂𝑟𝑣
𝐹 = 𝑘𝛥𝑥
𝛥𝐿 =
1 𝐹
𝑌𝐴
𝐿
0
𝑠𝑡𝑟𝑒𝑠𝑠 =
𝐹
𝐴
𝑠𝑡𝑟𝑎𝑖𝑛 =
𝛥𝐿
𝐿
0
𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑌 × 𝑠𝑡𝑟𝑎𝑖𝑛
𝛥𝑥 =
1 𝐹
𝑆𝐴
𝐿
0
𝛥𝑉 =
1 𝐹
𝐵𝐴
𝑉
0
Chapter 6: Uniform Circular
Motion and Gravitation
𝛥𝜃 =
𝛥𝑠
𝑟
2 𝜋 𝑟𝑎𝑑 = 360° = 1 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝜔 =
𝛥𝜃
𝛥𝑡
𝑣 = 𝑟𝜔
𝑎
𝐶
=
𝑣
2
𝑟
𝑎
𝐶
= 𝑟𝜔
2
𝐹
𝐶
= 𝑚𝑎
𝐶
𝐹
𝐶
=
𝑚𝑣
2
𝑟
𝑡𝑎𝑛 𝜃 =
𝑣
2
𝑟𝑔
𝐹
𝐶
= 𝑚𝑟𝜔
2
𝐹 = 𝐺
𝑚𝑀
𝑟
2
𝑔 =
𝐺𝑀
𝑟
2
𝑇
1
2
𝑇
2
2
=
𝑟
1
3
𝑟
2
3
𝑇
2
=
4 𝜋
2
𝐺𝑀
𝑟
3
𝑟
3
𝑇
2
=
𝐺
4 𝜋
2
𝑀
Chapter 7: Work, Energy, and
Energy Resources
𝑊 = 𝑓𝑑 𝑐𝑜𝑠 𝜃
𝐾𝐸 =
𝑚𝑣
2
𝑊
𝑛𝑒𝑡
=
𝑚𝑣
𝑓
2
−
𝑚𝑣
0
2
𝑃𝐸
𝑔
= 𝑚𝑔ℎ
𝑃𝐸
𝑠
=
𝑘𝑥
2
𝐾𝐸
0
+ 𝑃𝐸
0
= 𝐾𝐸
𝑓
+ 𝑃𝐸
𝑓
𝐾𝐸
0
+ 𝑃𝐸
0
+ 𝑊
𝑛𝑐
= 𝐾𝐸
𝑓
+ 𝑃𝐸
𝑓
𝐸𝑓𝑓 =
𝑊
𝑜𝑢𝑡
𝐸
𝑖𝑛
𝑃 =
𝑊
𝑡
Chapter 8: Linear Momentum
and Collisions
𝑝 = 𝑚𝑣
𝛥𝑝 = 𝐹
𝑛𝑒𝑡
𝛥𝑡
𝑝
0
= 𝑝
𝑓
𝑚
1
𝑣
01
+ 𝑚
2
𝑣
02
= 𝑚
1
𝑣
𝑓 1
+ 𝑚
2
𝑣
𝑓 2
𝑚
1
𝑣
01
2
+
𝑚
2
𝑣
02
2
=
𝑚
1
𝑣
𝑓 1
2
+
𝑚
2
𝑣
𝑓 2
2
𝑚
1
𝑣
1
= 𝑚
1
𝑣
1
′
𝑐𝑜𝑠 𝜃
1
+ 𝑚
2
𝑣
2
′
𝑐𝑜𝑠 𝜃
2
0 = 𝑚
1
𝑣
1
′
𝑠𝑖𝑛 𝜃
1
+ 𝑚
2
𝑣
2
′
𝑠𝑖𝑛 𝜃
2
𝑚𝑣
1
2
=
𝑚𝑣
1
′
+
𝑚𝑣
2
′
+ 𝑚𝑣
1
′
𝑣
2
′
𝑐𝑜𝑠(𝜃
1
− 𝜃
2
)
𝑎 =
𝑣
𝑒
𝑚
𝛥𝑚
𝛥𝑡
− 𝑔
𝑣
𝑐𝑚
=
𝑣
1
𝑚
1
+ 𝑣
2
𝑚
2
𝑚
1
+ 𝑚
2
Chapter 9: Statics and Torque
𝜏 = 𝑟𝐹 𝑠𝑖𝑛 𝜃
𝑟
⊥
= 𝑟 𝑠𝑖𝑛 𝜃
𝑀𝐴 =
𝐹
𝑜
𝐹
𝑖
=
𝑙
𝑖
𝑙
𝑜
𝑙
𝑖
𝐹
𝑖
= 𝑙
𝑜
𝐹
𝑜
Chapter 10: Rotational Motion
and Angular Momentum
𝜔 =
𝛥𝜃
𝛥𝑡
𝑣 = 𝑟𝜔
𝛼 =
𝛥𝜔
𝛥𝑡
𝑎
𝑡
=
𝛥𝑣
𝛥𝑡
𝑎
𝑡
= 𝑟𝛼
𝜃 = 𝜔𝑡
𝜔 = 𝜔
0
+ 𝛼𝑡
𝜃 = 𝜔
0
𝑡 +
𝛼𝑡
2
𝜔
2
= 𝜔
0
2
+ 2 𝛼𝜃
𝜔 =
𝜔
0
+ 𝜔
𝑛𝑒𝑡 𝜏 = 𝐼𝛼
Hoop about cylinder axis: 𝐼 = 𝑀𝑅
2
Hoop about any diameter: 𝐼 =
𝑀𝑅
2
2
Ring: 𝐼 =
𝑀
2
(
𝑅
1
2
+ 𝑅
2
2
)
Solid cylinder (or disk) about
cylinder axis: 𝐼 =
𝑀𝑅
2
2
Solid cylinder (or disk) about
central diameter: 𝐼 =
𝑀𝑅
2
4
+
𝑀ℓ
2
12
Thin rod about axis through center
⊥ to length: 𝐼 =
𝑀ℓ
2
12
Thin rod about axis through one end
⊥ to length: 𝐼 =
𝑀ℓ
2
3
Solid sphere: 𝐼 =
2 𝑀𝑅
2
5
Thin spherical shell: 𝐼 =
2 𝑀𝑅
2
3
Slab about ⊥ axis through center:
𝐼 =
𝑀(𝑎
2
+𝑏
2
)
12
𝑛𝑒𝑡 𝑊 = (𝑛𝑒𝑡 𝜏)𝜃
𝐾𝐸
𝑟𝑜𝑡
=
𝐼𝜔
2
𝐿 = 𝐼𝜔
𝑛𝑒𝑡 𝜏 =
𝛥𝐿
𝛥𝑡
Chapter 11: Fluid Statics
𝜌 =
𝑚
𝑉
𝑃 =
𝐹
𝐴
𝑃
𝑎𝑡𝑚
= 1. 01 × 10
5
𝑃𝑎
𝑃 = 𝜌𝑔ℎ
𝑃
2
= 𝑃
1
+ 𝜌𝑔ℎ
𝐹
1
𝐴
1
=
𝐹
2
𝐴
2
𝐹
𝐵
= 𝑤
𝑓𝑙
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑑 =
𝜌
𝑜𝑏𝑗
𝜌
𝑓𝑙
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =
𝜌
𝜌
𝑤
𝛾 =
𝐹
𝐿
𝑃 =
4 𝛾
𝑟
ℎ =
2 𝛾 𝑐𝑜𝑠 𝜃
𝜌𝑔𝑟
Chapter 12: Fluid Dynamics
and Its Biological Medical
Applications
𝑄 =
𝑉
𝑡
𝑄 = 𝐴𝑣
𝐴
1
𝑣
1
= 𝐴
2
𝑣
2
𝑛
1
𝐴
1
𝑣
1
= 𝑛
2
𝐴
2
𝑣
2
𝑃
1
+
𝜌𝑣
1
2
+ 𝜌𝑔ℎ
1
= 𝑃
2
+
𝜌𝑣
2
2
+ 𝜌𝑔ℎ
2
(Δ𝑃 + Δ
𝜌𝑣
2
+ Δ𝜌𝑔ℎ) 𝑄 = 𝑝𝑜𝑤𝑒𝑟
𝑣
1
= √ 2 𝑔ℎ
𝜂 =
𝐹𝐿
𝑣𝐴
𝑄 =
𝑃
2
− 𝑃
1
𝑅
𝑅 =
8 𝜂𝑙
𝜋𝑟
4
𝑄 =
(𝑃
2
− 𝑃
1
)𝜋𝑟
4
8 𝜂𝑙
𝑁
𝑅
=
2 𝜌𝑣𝑟
𝜂
𝑁
𝑅
′
=
𝜌𝑣𝐿
𝜂
𝑥
𝑟𝑚𝑠
= √ 2 𝐷𝑡
Chapter 13: Temperature,
Kinetic Theory, and the Gas
Laws
𝑇
(
°𝐹
)
=
𝑇
(
°𝐶
)
𝑇(𝐾) = 𝑇(°𝐶) + 273. 15
𝛥𝐿 = 𝛼𝐿𝛥𝑇
𝛥𝐴 = 2 𝛼𝐴𝛥𝑇
𝛥𝑉 = 𝛽𝑉𝛥𝑇
𝛽 ≈ 3 𝛼
𝑃𝑉 = 𝑁𝑘𝑇
𝑘 = 1. 38 × 10
− 23
𝐽/𝐾
𝑁
𝐴
= 6. 02 × 10
23
𝑚𝑜𝑙
− 1
𝑃𝑉 = 𝑛𝑅𝑇
𝑅 = 8. 31
𝐽
𝑚𝑜𝑙 ⋅ 𝐾
𝑃𝑉 =
𝑁𝑚𝑣
2
𝐾𝐸 =
𝑚𝑣
2
=
𝑘𝑇
𝑣
𝑟𝑚𝑠
=
√
3 𝑘𝑇
𝑚
% 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦
=
𝑣𝑎𝑝𝑜𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑝𝑜𝑟 𝑑𝑒𝑛𝑎𝑠𝑖𝑡𝑦
× 100%
Chapter 14: Heat and Heat
Transfer Methods
1. 000 𝑘𝑐𝑎𝑙 = 4186 𝐽
𝑄 = 𝑚𝑐𝛥𝑇
𝑄 = 𝑚𝐿
𝑓
𝑄 = 𝑚𝐿
𝑣
𝑄
𝑡
=
𝑘𝐴(𝑇
2
− 𝑇
1
)
𝑑
𝑄
𝑡
= 𝜎𝑒𝐴𝑇
4
𝜎 = 5. 67 × 10
− 8
𝐽
𝑠 ⋅ 𝑚
2
⋅ 𝐾
4
𝑄
𝑛𝑒𝑡
𝑡
= 𝜎𝑒𝐴(𝑇
2
4
− 𝑇
1
4
)
Chapter 15: Thermodynamics
𝑈 =
𝑁𝑘𝑇
𝛥𝑈 = 𝑄 − 𝑊
𝑊 = 𝑃𝛥𝑉 (𝑖𝑠𝑜𝑏𝑎𝑟𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)
Δ𝑈 = 𝑄 − 𝑃Δ𝑉
𝑊 = 0 (𝑖𝑠𝑜𝑐ℎ𝑜𝑟𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)
Δ𝑈 = 𝑄
𝑄 = 𝑊 (𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)
Δ𝑈 = 0
𝑄 = 0
(
𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
)
Δ𝑈 = −𝑊
𝐸𝑓𝑓 =
𝑊
𝑄
ℎ
𝐸𝑓𝑓 = 1 −
𝑄
𝑐
𝑄
ℎ
(
𝑐𝑦𝑐𝑙𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
)
𝐸𝑓𝑓
𝐶
= 1 −
𝑇
𝑐
𝑇
ℎ
𝐶𝑂𝑃
ℎ𝑝
=
𝑄
ℎ
𝑊
𝐶𝑂𝑃
𝑟𝑒𝑓
= 𝐶𝑂𝑃
ℎ𝑝
− 1 =
𝑄
𝑐
𝑊
𝐸𝐸𝑅 =
𝑄
𝑐
𝑡
1
⁄
𝑄
ℎ
𝑡
2
⁄
𝛥𝑆 =
𝑄
𝑇
𝛥𝑆
𝑡𝑜𝑡
=
𝑄
ℎ
𝑇
ℎ
+
𝑄
𝑐
𝑇
𝑐
= 0
𝑊
𝑢𝑛𝑎𝑣𝑎𝑖𝑙
= 𝛥𝑆 ⋅ 𝑇
0
𝑆 = 𝑘 𝑙𝑛 𝑊
𝑘 = 1. 38 × 10
− 23
𝐽/𝐾
Chapter 16: Oscillatory Motion
and Waves
𝑓 =
𝑇
𝑣 =
𝜆
𝑇
= 𝑓𝜆
𝐹 = −𝑘𝑥
𝑃𝐸
𝑒𝑙
=
𝑘𝑥
2
𝑇 = 2 𝜋√
𝑚
𝑘
𝑓 =
2 𝜋
√
𝑘
𝑚
𝑥
(
𝑡
)
= 𝑋 𝑐𝑜𝑠 (
2 𝜋𝑡
𝑇
)
𝑣(𝑡) = −𝑣
𝑚𝑎𝑥
𝑠𝑖𝑛 (
2 𝜋𝑡
𝑇
)
𝑣
𝑚𝑎𝑥
=
2 𝜋𝑋
𝑇
= 𝑋
√
𝑘
𝑚
𝑎(𝑡) = −
𝑘𝑋
𝑚
𝑐𝑜𝑠 (
2 𝜋𝑡
𝑇
)
𝑣
𝑠𝑡𝑟𝑖𝑛𝑔
= √
𝐹
𝑚/𝐿
𝑣
𝑤
= ( 331
𝑚
𝑠
)
√
𝑇
273 𝐾
𝐼 =
𝑃
𝐴
𝐴
𝑠𝑝ℎ𝑒𝑟𝑒
= 4 𝜋𝑟
2
𝐼 =
(
𝛥𝑝
)
2
2 𝜌𝑣
𝑤
Chapter 17: Physics of Hearing
𝛽 =
(
10 𝑑𝐵
)
𝑙𝑜𝑔 (
𝐼
𝐼
0
)
𝑓
𝑜
= 𝑓
𝑠
(
𝑣
𝑤
± 𝑣
𝑜
𝑣
𝑤
∓ 𝑣
𝑠
)
𝑓
𝐵
= |𝑓
1
− 𝑓
2
|
𝑓
𝑛
= 𝑛 (
𝑣
𝑤
2 𝐿
)
𝑓
𝑛
= 𝑛 (
𝑣
𝑤
4 𝐿
)
𝑍 = 𝜌𝑣
𝑎 =
(
𝑍
2
− 𝑍
1
)
2
(𝑍
1
+ 𝑍
2
)
2
Chapter 18: Electric Charge
and Electric Field
|𝑞
𝑒
| = 1. 60 × 10
− 19
𝐶
𝐹 = 𝑘
|𝑞
1
𝑞
2
|
𝑟
2
𝐸 = 𝐹/𝑞
𝐸 = 𝑘
|
𝑄
|
𝑟
2
Chapter 19: Electric Potential
and Electric Energy
𝑉 =
𝑃𝐸
𝑞
𝛥𝑃𝐸 = 𝑞𝛥𝑉
𝑊 = 𝑞𝑉
𝐴𝐵
𝐸 =
𝑉
𝐴𝐵
𝑑
𝐸 = −
𝛥𝑉
𝛥𝑠
𝑉 =
𝑘𝑄
𝑟
𝐶 =
𝑄
𝑉
𝐶 = 𝜖
0
𝐴
𝑑
𝜖
0
= 8. 85 × 10
− 12
𝐹
𝑚
𝐶 = 𝜅𝜖
0
𝐴
𝑑
𝐸
𝑐𝑎𝑝
=
𝑄𝑉
=
𝐶𝑉
2
=
𝑄
2
2 𝐶
Chapter 20: Electric Current,
Resistance, and Ohm’s Law
𝐼 =
𝛥𝑄
𝛥𝑡
𝐼 = 𝑛𝑞𝐴𝑣
𝑑
𝑉 = 𝐼𝑅
𝑅 =
𝜌𝐿
𝐴
𝜌 = 𝜌
0
( 1 + 𝛼𝛥𝑇)
𝑅 = 𝑅
0
( 1 + 𝛼𝛥𝑇)
𝑃 = 𝐼𝑉 =
𝑉
2
𝑅
= 𝐼
2
𝑅
𝑃
𝑎𝑣𝑒
=
𝐼
0
𝑉
0
𝐼
𝑟𝑚𝑠
=
𝐼
0
√ 2
𝑉
𝑟𝑚𝑠
=
𝑉
0
√ 2
Chapter 21: Circuits,
Bioelectricity, and DC
Instruments
𝑅
𝑆
= 𝑅
1
+ 𝑅
2
+ 𝑅
3
+ ⋯
𝑅
𝑃
=
𝑅
1
+
𝑅
2
+
𝑅
3
+ ⋯
𝑉 = 𝑒𝑚𝑓 − 𝐼𝑟
𝑉 = 𝑒𝑚𝑓 ( 1 − 𝑒
−
𝑡
𝑅𝐶 )
𝜏 = 𝑅𝐶
𝑉 = 𝑉
0
𝑒
−
𝑡
𝑟𝐶
Chapter 22: Magnetism
𝐹 = 𝑞𝑣𝐵 𝑠𝑖𝑛 𝜃
𝑟 =
𝑚𝑣
𝑞𝐵
𝜖 = 𝐵𝑙𝑣
𝐹 = 𝐼𝐿𝐵 𝑠𝑖𝑛 𝜃
𝜏 = 𝑁𝐼𝐴𝐵 𝑠𝑖𝑛 𝜃
𝐵 =
𝜇
0
𝐼
2 𝜋𝑟
𝐵 =
𝜇
0
𝐼
2 𝑅
𝐵 = 𝜇
0
𝑛𝐼
𝐹
𝑙
=
𝜇
0
𝐼
1
𝐼
2
2 𝜋𝑟
Chapter 23: Electromagnetic
Induction, AC Circuits, and
Electrical Technologies
𝛷 = 𝐵𝐴 𝑐𝑜𝑠 𝜃
𝑒𝑚𝑓 = −𝑁
𝛥𝛷
𝛥𝑡
𝑒𝑚𝑓 = 𝑣𝐵𝐿
𝑒𝑚𝑓 = 𝑁𝐴𝐵𝜔 𝑠𝑖𝑛 𝜔𝑡
𝑉
𝑆
𝑉
𝑃
=
𝑁
𝑆
𝑁
𝑃
=
𝐼
𝑃
𝐼
𝑆
𝑒𝑚𝑓
1
= −𝑀
𝛥𝐼
2
𝛥𝑡
𝑒𝑚𝑓 = −𝐿
𝛥𝐼
𝛥𝑡
𝐿 = 𝑁
𝛥𝛷
𝛥𝐼
𝐿 =
μ
0
𝑁
2
𝐴
ℓ
𝐸
𝑖𝑛𝑑
=
𝐿𝐼
2
𝐼 = 𝐼
0
( 1 − 𝑒
−
𝑡
𝜏 )
𝜏 =
𝐿
𝑅
𝐼 = 𝐼
0
𝑒
−
𝑡
𝜏
𝐼 =
𝑉
𝑋
𝐿
𝑋
𝐿
= 2 𝜋𝑓𝐿
𝐼 =
𝑉
𝑋
𝐶
𝑋
𝐶
=
2 𝜋𝑓𝐶
𝐼
0
=
𝑉
0
𝑍
𝑜𝑟 𝐼
𝑟𝑚𝑠
=
𝑉
𝑟𝑚𝑠
𝑍
𝑍 = √𝑅
2
+ (𝑋
𝐿
− 𝑋
𝐶
)
2
𝑓
0
=
2 𝜋√𝐿𝐶
𝑐𝑜𝑠 𝜙 =
𝑅
𝑍
𝑃
𝑎𝑣𝑒
= 𝐼
𝑟𝑚𝑠
𝑉
𝑟𝑚𝑠
𝑐𝑜𝑠 𝜙
Chapter 24: Electromagnetic
Waves
𝑐 =
√
𝜇
0
𝜖
0
𝐸
𝐵
= 𝑐
𝑐 = 𝑓𝜆
𝐼
𝑎𝑣𝑒
=
𝑐𝜖
0
𝐸
0
2
𝐼
𝑎𝑣𝑒
=
𝑐𝐵
0
2
2 𝜇
0
𝐼
𝑎𝑏𝑒
=
𝐸
0
𝐵
0
2 𝜇
0
Chapter 25: Geometric Optics
𝜃
𝑖
= 𝜃
𝑟
𝑛 =
𝑐
𝑣
𝑛
1
𝑠𝑖𝑛 𝜃
1
= 𝑛
2
𝑠𝑖𝑛 𝜃
2
𝜃
𝑐
= 𝑠𝑖𝑛
− 1
𝑛
2
𝑛
1
𝑃 =
𝑓
𝑓
=
𝑑
𝑜
+
𝑑
𝑖
𝑚 =
ℎ
𝑖
ℎ
𝑜
= −
𝑑
𝑖
𝑑
𝑜
𝑓 =
𝑅
Chapter 26: Vision and Optical
Instruments
𝑃 =
𝑑
𝑜
+
𝑑
𝑖
𝑚 = 𝑚
𝑜
𝑚
𝑒
𝑁𝐴 = 𝑛 𝑠𝑖𝑛 𝛼
𝑓/# =
𝑓
𝐷
≈
2 𝑁𝐴
𝑑
𝑖
= 𝑓
𝑜
𝑀 =
𝑓
𝑜
𝑓
𝑒
Chapter 27: Wave Optics
𝜆
𝑛
=
𝜆
𝑛
sin 𝜃 = 𝑚
𝜆
𝑑
𝑠𝑖𝑛 𝜃 = (𝑚 +
)
𝜆
𝑑
𝑠𝑖𝑛 𝜃 = 𝑚
𝜆
𝑊
𝜃 = 1. 22
𝜆
𝐷
2 𝑡 =
𝜆
𝑛
2 𝑡 = 𝜆
𝑛
I = ½ I 0
𝐼 = 𝐼
0
𝑐𝑜𝑠
2
𝜃
𝑡𝑎𝑛 𝜃
𝑏
=
𝑛
2
𝑛
1
Chapter 28: Special Relativity
𝛥𝑡 =
𝛥𝑡
0
√
1 −
𝑣
2
𝑐
2
𝛾 =
√
1 −
𝑣
2
𝑐
2
𝐿 = 𝐿
0
√
1 −
𝑣
2
𝑐
2
𝑣
𝐿𝐺
=
𝑣
𝐿𝑇
+ 𝑣
𝑇𝐺
1 +
𝑣
𝐿𝑇
𝑣
𝑇𝐺
𝑐
2
𝜆
𝑜𝑏𝑠
= 𝜆
𝑠
√
1 +
𝑢
𝑐
1 −
𝑢
𝑐
𝑓
𝑜𝑏𝑠
= 𝑓
𝑠
√
1 −
𝑢
𝑐
1 +
𝑢
𝑐
𝑝 =
𝑚𝑣
√
1 −
𝑣
2
𝑐
2
𝐸 =
𝑚𝑐
2
√
1 −
𝑣
2
𝑐
2
𝐸
0
= 𝑚𝑐
2
𝐾𝐸
𝑟𝑒𝑙
=
𝑚𝑐
2
√
1 −
𝑣
2
𝑐
2
− 𝑚𝑐
2
𝐸
2
=
(
𝑝𝑐
)
2
+
(
𝑚𝑐
2
)
2