Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

STAT 212: Quiz 11 - Formulas for Descriptive and Inferential Statistics, Study notes of Data Analysis & Statistical Methods

Formulas for various statistical calculations including mean, standard deviation, variance, regression, hypothesis testing, and correlation. It is intended for students in a statistics course, specifically stat 212.

Typology: Study notes

Pre 2010

Uploaded on 03/11/2009

koofers-user-51k-1
koofers-user-51k-1 🇺🇸

10 documents

1 / 1

Toggle sidebar

Related documents


Partial preview of the text

Download STAT 212: Quiz 11 - Formulas for Descriptive and Inferential Statistics and more Study notes Data Analysis & Statistical Methods in PDF only on Docsity! STAT 212: Quiz 11 Formulas • x̄ = 1 n n∑ i=1 xi • s2 = 1 n− 1 n∑ i=1 (xi − x̄)2 = 1 n− 1 { n∑ i=1 x2i − ( ∑n i=1 xi) 2 n } • s = √ s2 • r = 1 n− 1 n∑ i=1 ( xi − x̄ sx )( yi − ȳ sy ) • ŷ = b0 + b1x; b1 = r sy sx , b0 = ȳ − b1x̄ • µX = ∑ xipi • σ2X = ∑ (xi − µX)2pi • σ2a+bX = b2σ2X • σ2X+Y = σ2X + σ2Y + 2ρσXσY • σ2X−Y = σ2X + σ2Y − 2ρσXσY • µx̄ = µ; σx̄ = σ√ n • P (X = k) = n! k!(n− k)! pk(1− p)n−k; µ = np, σ = √ np(1− p) • P (X = k) = e −µµk k! • x̄± z∗ σ√ n • n = ( z∗σ m )2 • z = x̄− µ (σ/ √ n) • t = x̄− µ (s/ √ n) • x̄± t∗ s√ n • z = (x̄1 − x̄2)− (µ1 − µ2)√ σ21 n1 + σ 2 2 n2 • t = (x̄1 − x̄2)− (µ1 − µ2)√ s21 n1 + s 2 2 n2 • (x̄1 − x̄2)± t∗ √ s21 n1 + s22 n2 • p̂± z∗ √ p̂(1− p̂) n • n = ( z∗ m )2 p∗(1− p∗) • z = p̂− p0√ p0(1− p0)/n • (p̂1 − p̂2)± z∗ √ p̂1(1− p̂1) n1 + p̂2(1− p̂2) n2 • z = (p̂1 − p̂2)√ p̂(1− p̂) ( 1 n1 + 1n2 ) , p̂ = X1 +X2n1 + n2 • SST = Total SS, SSR = Regression SS, SSE = Residual SS • SST = SSE + SSR • SSE = n∑ i=1 (yi − ŷi)2 = (n− 1)s2y(1− r2) • SST = n∑ i=1 (yi − ȳ)2, SSR = n∑ i=1 (ŷi − ȳ)2 • s = √ SSE n− 2 • t = b1 − β1 SEb1 • SEb1 = s√ (n− 1)s2x • t = r √ n− 2√ 1− r2 • r2 = SSR SST = 1− SSE SST • ŷ ± t∗SEµ̂, SEµ̂ = s √ 1 n + (x∗ − x̄)2 (n− 1)s2x • ŷ ± t∗SEŷ, SEŷ = s √ 1 + 1 n + (x∗ − x̄)2 (n− 1)s2x