Download Simple Regression Analysis - Exam Questions with Solutions | STAT 202 and more Exams Business Statistics in PDF only on Docsity!
STAT 202
Recitation Problem: Simple Regression Analysis
Betty’s Bodacious Burgers sells burgers (duh), and Betty has recorded advertising expenses and
gross sales data for n = 12 randomly selected months. Expense and sales values are measured in $1k
units. Here’s Betty’s data and some other useful results. For accurate calculation I recommend that
you work to five (or more) significant digits!
x = advertising
expense
($1k units)
y = gross
sales
($1k units)
2.4 22.
3.1 31.
4.2 34.
1.8 12.
3.5 30.
3.7 39.
4.1 45.
3.6 28.
3.4 25.
4.1 38.
3.7 42.
2.9 33.
0 5 10 15 20 25 30 35 40 45 50 1 2 3 4 5 ad expenses gross sales xi ^40.^50 xi^2 ^142.^43 yi^385.^2 y i^2 ^13 ,^328.^38 xiyi ^1 ,^361.^89
(a) Find the equation of the sample regression line.
(b) Next month, Betty plans to spend $2,500 on advertising. Predict (point predictor) next month’s
gross sales.
(c) Calculate s y.x, the ‘standard error of estimate.’
(d) At the 5% level of significance, test to see if gross sales is related to advertising.
(e) Refer to Part (b). Find a 95% prediction interval for next month’s gross sales.
‘Take-home’ problem:
Use Excel or Minitab to generate a regression analysis printout for this data. Verify that your results
for (a), (c), and (d) match those given on the printout, give or take rounding error. Also calculate the
correlation coefficient and verify that the square of your correlation coefficient matches the R -
squared value on the printout.
Possibly Useful Formulas:
( )( ) x n x xy nx y b i i i
b 0 (^) y b 1 x
( )
( ˆ ) 0 1
2 2 .
n
y b y b x y
n
y y
s y x i i i i i i
CI:
2 2
2 . 1 (x value ) ˆ ( ) x n x x n y t s i y x
PI:
2 2
2 . 1 (x value ) ˆ ( ) 1 x n x x n y t s i y x
i i i i i i i i n x x n y y n x y x y r 2 2 . 1 x n x s s i y x b 1
s b
b
t
Solution:
(a) First note that X ^40.^5 /^12 ^3.^3750 ; Y ^385.^2 /^12 ^32.^10
- 7688
- 7425
- 840
- 43 12 ( 3. 3750 ) ( )( ) 1361. 89 12 ( 3. 3750 )( 32. 10 ) (^1 )
x n x xy n x y b i i i b 0 y b 1 x 32. 10 10. 7688 ( 3. 3750 ) 4. 2447
So the sample regression line is y ˆ^^ ^4.^2447 ^10.^7688 x
(b) y ˆ^^ ^4.^2447 ^10.^7688 (^2.^5 )^22.^6773 but that’s in $1k units so predicted gross sales is
$22,677.30.
(c)
- 4545 10
13328. 38 ( 4. 2447 )( 385. 2 ) 10. 7688 ( 1361. 89 )
( 2 ) 0 1
.
n y b y b x y s (^) y x i i i i
(d) Let’s use a t -test to test H 0 : 1 = 0 (no relation) vs. H 1 : 1 ≠ 0 (is a relation).
Test stat is
1
s b
b
t
where
- 27616
- 7425
- 4545 2 2 . 1
x nx
s s i y x
b . So
1
^1 ^
s b
b
t . Degrees of freedom = n – 2 = 10, the decision rule is to
reject H 0 if t < -2.2281 or t > +2.2281. Since 4.7277 > 2.2281 we reject H 0 and conclude that
there is a relation (the slope is different from zero).
(e)
22. 6773 2. 2281 ( 5. 4545 ) 1. 216659 22. 6773 13. 4052 ( 9. 2721 , 36. 0825 )
( 2. 5 3. 3750 )
22. 6773 2. 2281 ( 5. 4545 ) 1
1 (x value ) ˆ ( ) 1 2 2 2 2 .
x nx
x n y t s i y x
So there is a 0.95 probability that next month’s gross sales will fall between $9,272.10 and
$36,082.50.
Here’s most of the regression printout:
SUMMARY OUTPUT Regression Statistics Multiple R 0. R Square 0. Adjusted R Square 0. Standard Error 5. Observations 12 ANOVA df SS MS F Significanc e F Regression 1 665.9443796 665.9444 22.38351 0. Residual 10 297.5156204 29. Total 11 963. Coefficient s Standard Error t Stat P-value Lower 95% Upper 95% Intercept -4.2448 7.841777188 -0.54131 0.600148 -21.7174 13. x 10.76883 2.276168371 4.731121 0.000803 5.69721 15.