Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Test Paper - Strength Of Materials - Mumbai University - Chemical Engineering - 4th Semester - 2007, Study notes of Materials Physics

Change in diameter, change in length, change in volume, point of contraflexure, section modulus, care as kernal of the section, principal stress, angle of obliquity, hoop stress, torsional rigidity, usual relations, intensity of stress 

Typology: Study notes

2010/2011

Uploaded on 09/22/2011

sanijit
sanijit 🇮🇳

4.7

(3)

43 documents

1 / 3

Toggle sidebar

Related documents


Partial preview of the text

Download Test Paper - Strength Of Materials - Mumbai University - Chemical Engineering - 4th Semester - 2007 and more Study notes Materials Physics in PDF only on Docsity!

ak Cchwrnieed ) C Gorse MY CP) pec- 2-°2) H Gub:- Spengrn of prion als. 4878-07. (REVISED COURSE) CD-5880 qopats -s (3 Hours) [ Total Marks : 100 Question No. 1:is compulsory. Attempt any four out of remaining six questions. Assumptions made should be clearly stated. < Assume any suitable data wherever required with justification. Figures to the right indicate full marks. Illustrate answers with sketches wherever required. ) Define and explain the following :— 6 (i) Modulus of rigidity (ii) Complimentary shear (iii) Hooks Law. Derive the following expressions with usual relations —— 8 . Mi ” () o=a 7 Sa Ww a=" 2 Derive expression for Euler's critical load for column fixed at one end and free at otherend. 6 Draw the SED and BMD for a simply supported beam AB of span 8 metres carrying 10 concentrated loads of 4 KN, 10 kN and 7 KN at distances of 1-5 metres, 4 metres and 6 metres from the left support. LK yKN RN A Sm usm 2m 2m & c D E < 3m - Naz lokKN Nib= IKY Fwo wooden pieces 10 cm x 10 om in cross section are glued together along line AB as 10 ‘ehown in figure. What maximum axial force P can be applied if the allowable shearing and explain in brief :-— 20 Hooks Law (f) Principal stresses Point of Contra-flexure (g) Standardness Ratio Section Modulus (h) Angle of Obliquity Care as Kernal of the section (i) Hoop stress Complimentary shear (]). Torsional rigidity. [ TURN OVER