# Search in the document preview

Propagation of Errors

Docsity.com

Propagation of Errors

In numerical methods, the calculations are not made with exact numbers. How do these inaccuracies propagate through the calculations?

Docsity.com

Example 1:
Find the bounds for the propagation in adding two numbers. For example if one
is calculating *X *+*Y *where
*X* = 1.5 ± 0.05
*Y* = 3.4 ± 0.04
**Solution
**Maximum possible value of *X* = 1.55 and *Y* = 3.44
Maximum possible value of *X* + *Y* = 1.55 + 3.44 = 4.99
Minimum possible value of *X* = 1.45 and *Y* = 3.36.
Minimum possible value of *X* + *Y* = 1.45 + 3.36 = 4.81
Hence
4.81 ≤ X + Y ≤4.99.

Docsity.com

Propagation of Errors In Formulas

*f nn XXXXX *,,.......,,, 1321 −
*f
*

*n
n
*

*n
n
*

*X
X
fX
*

*X
fX
*

*X
fX
*

*X
ff *∆

∂ ∂

+∆ ∂ ∂

++∆ ∂ ∂

+∆ ∂ ∂

≈∆ − −

1 1

2 2

1 1

.......

If is a function of several variables then the maximum possible value of the error in is

Docsity.com

Example 2:

The strain in an axial member of a square cross- section is given by Given Find the maximum possible error in the measured strain.

*Eh
F
*2∈=

N9.072 ±=*F
*mm1.04 ±=*h
*GPa5.170 ±=*E
*

Docsity.com

Example 2:

)1070()104( 72

923 ×× ∈= −

610286.64 −×= µ286.64=

*E
E
*

*h
h
*

*F
F
*

∆ ∂ ∈∂

+∆ ∂ ∈∂

+∆ ∂ ∈∂

∈=∆

Solution

Docsity.com

Example 2:

*EhF *2
1

= ∂ ∈∂

*Eh
F
*

*h *3
2
−=

∂ ∈∂

22 *Eh
F
*

*E
*−=

∂ ∈∂

*E
Eh
*

*Fh
Eh
FF
*

*Eh
E *∆+∆+∆=∆ 2232

21

9 2923

933923

105.1 )1070()104(

72

0001.0 )1070()104(

7229.0 )1070()104(

1

×× ××

+

× ××

× +×

×× =

−

−−

µ3955.5=

Thus

Hence )3955.5286.64( µµ ±∈=

Docsity.com

Example 3:

Subtraction of numbers that are nearly equal can create unwanted
inaccuracies. Using the formula for error propagation, show that this is true.
**
Solution
**Let
Then
So the relative change is

*yxz *−=

*y
y
zx
*

*x
zz *∆

∂ ∂ +∆

∂ ∂

=∆

*yx *∆−+∆= )1()1(
*yx *∆+∆=

*yx
yx
*

*z
z
*

−

∆+∆ =

∆

Docsity.com

Example 3:

For example if
001.02 ±=*x
*

001.0003.2 ±=*y
*

|003.22| 001.0001.0

−

+ =

∆
*z
z
*

= 0.6667 = 66.67%

Docsity.com