Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solutions to 12 Problems - Regression Analysis | ISYE 6414, Study notes of Systems Engineering

Material Type: Notes; Professor: Abayomi; Class: Regression Analysis; Subject: Industrial & Systems Engr; University: Georgia Institute of Technology-Main Campus; Term: Spring 2009;

Typology: Study notes

Pre 2010

Uploaded on 09/17/2009

koofers-user-vy5-2
koofers-user-vy5-2 🇺🇸

10 documents

1 / 3

Toggle sidebar

Related documents


Partial preview of the text

Download Solutions to 12 Problems - Regression Analysis | ISYE 6414 and more Study notes Systems Engineering in PDF only on Docsity! ISYE 6414 - Spring 2009 Solution Lecture 1 - Prerequisites Problem 1. ∏n i=1 c · exi = cne ( ∑n i=1 xi) Problem 2. • The most likely sum of two rolled six-sided dice is 7 • The most likely sum of three rolled seven-sided dice is 12 Problem 3. Cov(aX + b, Y ) = E [(aX + b− E(aX + b)) (Y − E(Y ))] = = E [(aX + b− aE(X)− b) (Y − E(Y ))] = E [(a (X − E(X))) (Y − E(Y ))] = = E [(X − E(X)) (Y − E(Y ))] = aCov(aX + b, Y ) Problem 4. Cov  n∑ i=1 Xi, n∑ j=1 Yj  = E ( n∑ i=1 Xi − E ( n∑ i=1 Xi )) n∑ j=1 Yj − E  n∑ j=1 Yj  = = E ( n∑ i=1 Xi − n∑ i=1 E (Xi) ) n∑ j=1 Yj − n∑ j=1 E (Yj)  = = E  n∑ i=1 (Xi − E (Xi)) n∑ j=1 (Yj − E (Yj))  = = n∑ i=1 E (Xi − E (Xi)) n∑ j=1 (Yj − E (Yj))  = = n∑ i=1 n∑ j=1 E [(Xi − E (Xi)) (Yj − E (Yj))] Problem 5. By definition we know that λ(x) ≥ 0; x ∈ <. Also: ∫∞ −∞ λ(x)dx = ∫∞ x0 λ(x)dx = ∫∞ x0 f(x)dx 1−F (x0) = 1−F (x0) 1−F (x0) = 1. Now suppose X ∼ f(x) = e−x · 1(0,∞). Then: P (X < x|X ≥ x0) = P (x0 < X ∩X ≤ x) P (X ≥ x0) = P (x0 ≤ X ≤ x) P (X ≥ x0) = e−x0 − e−x e−x0 = 1− e−(x−x0) ⇒ f (x|X > x0) = d [ 1− e−(x−x0) ] dx · 1(x0,∞) = e −(x−x0) · 1(x0,∞) = λ(x) 1 Problem 6. In this case x0 = a, then, the probability that a nonsmoker with age a will survive ro age b is: P (nonsmoker) = ∫ ∞ b λn(x)dx = 1− ∫ b a λn(x)dx And the same probability for a smoker is: P (smoker) = ∫ ∞ b λs(x)dx = ∫ ∞ b 1 2 λn(x)dx = 1 2 · P (nonsmoker) Problem 7. We know that if X ∼ f(x), then Z = aX + b, where a ≥ 0 and b ∈ <, has density function: fZ(z) = fX ( z − b a ) · a−1 In this case a = σ−1 and b = −µσ , then: fZ(z) = fX (σz − µ) · σ = (2π)− 1 2 e z2 2 ∼ Normal(0, 1) Problem 8. We know that the moment generating function of Xi is: MXi(t) = exp ( µit+ t2σ2i 2 ) . Then, assuming that the random variables X ′is are independent, we have: MSn(t) = n∏ i=1 MXi(t) = n∏ i=1 exp ( µit+ t2σ2i 2 ) = exp ( t n∑ i=1 µi + t2 2 n∑ i=1 σ2i ) Then, Sn ∼ Normal (∑n i=1 µi, ∑n i=1 σ 2 i ) . Problem 9. The maximum likelihood estimator for σ2 from N ( µ, σ2 ) is σ̂2 = ∑n i=1(Xi−X̄) 2 n . Then: E ( σ̂2 ) = E (∑n i=1 ( Xi − X̄ )2 n ) However: n∑ i=1 ( Xi − X̄ )2 = n∑ i=1 X2i − nX̄2 Then: E ( σ̂2 ) = E (∑n i=1X 2 i − nX̄2 n ) = = ∑n i=1E ( X2i ) − nE ( X̄2 ) n = = ∑n i=1E ( µ2 + σ2 ) − nE ( µ2 + σ 2 n ) n = σ2 n− 1 n That is, σ̂2 is an biased estimator for σ2. Problem 10. Both estimators are the same. 2
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved