# Renty 2 - Ćwiczenia - Elementarna matematyka finansowa, Notatki'z Matematyka Finansowa. University of Bialystok

PDF (140 KB)
2 strony
1000+Liczba odwiedzin
Opis
Notatki obejmują tematy z zakresu elementarnej matematyki finansowej: renty; zadania z podrecznika Kellisona
20punkty
Punkty pobierania niezbędne do pobrania
tego dokumentu
Podgląd2 strony / 2

EMF matematyka, I rok, I stopień

lista 7 renty

Zadania z podręcznika Kellisona

1. Find the accumulated value 18 years after the first payment is made of an annuity on which there are 8 payments of \$2000 each made at two years intervals. The nominal rate of interest convertible semiannually is 7%. Answer to the nearest dollar.

2. Find the present value of a ten-years annuity which pays \$400 at the beginning of each quarter for the first 5 years, increasing to \$600 per quarter thereafter. The annual effective rate is 12%. Answer to the nearest dollar.

3. Show that the present value at time 0 of 1 payable at times 7, 11, 15, 19, 23, and 27 is

a28 − a4 s3 − a1

.

4. A perpetuity of \$750 payable at the end of every year and a perpetuity of \$750 payable at the end of every 20 years are to be replaced by an annuity of R payable at the end of every year for 30 years. If i(2) = 0, 04, show that

R = 37500 ( 1 s2

+ v40

a40

) s2 a60

.

5. Find the expression for the present value of an annuity-due of \$600 per annum payable semiannually for 10 years if d(12) = 0, 09.

6. The present value of a perpetuity paying 1 at the end of every three years is 12591 . Find i.

7. Find the expression for the present value of an annuity on which payments are \$100 per quarter for five years, just before the first payment is made, if δ = 0, 08.

8. A perpetuity paying 1 at the beginning of each year has a present value of 20. If this perpetuity is exchange for another perpetuity paying R at the beginning of every two years, find R so that the values of the two perpetuities are equal.

9. Derive the following formulas

a) 1 a (m) n

= 1 s (m) n

+ i(m);

b) 1 ä (m) n

= 1 s̈ (m) n

+ d(m).

10. A sum of \$10000 is used to buy a deferred perpetuity-due paying \$500 every six months forever. Find an expression for the deferred period expressed as a function of d.

11. Find the expression for the present value of an annuity which pays 1 at the beginning of each 3-month period for 12 years, assuming a rate of interest per 4-month period.

12. Simplify 20∑

t=1

(t+ 5)vt.

13. The following payments are made under an annuity: 10 at the end of the fifth year, 9 at the end of the sixth year, decreasing by 1 each year until nothing is paid. Show that the present value is

10− a14 + a4 (1− 10i) i

14. A perpetuity-immediate has annual payments of 1, 3, 5, 7, . . .If the present value of the sixth and seventh payments are equal, find the present value of the perpetuity.

docsity.com

Zadania ze zbioru zadań Podgórskiej i inne

15. Renta z dołu składa się z 15 rat po 500 zł. Nominalna stopa procentowa z kapitalizacją kwartalną wynosi 12%. Jaka jest wartość końcowa tej renty, jeśli raty są:

a) miesięczne;

b) kwartalne;

c) półroczne?

16. Odsetki kapitalizowane są co kwartał przy stopie procentowej i(4) = 0, 08. Obliczyć wartość początkową renty o 12 ratach po 100 zł płatnych:

a) na koniec kolejnych kwartałów;

b) na początku kolejnych kwartałów;

c) na koniec kolejnych kwartałów z odroczeniem o trzy kwartały;

d) na koniec kolejnych półroczy;

e) na koniec kolejnych miesięcy, przy czym odsetki za podokresy naliczane są zgodnie z zasadą:

1) oprocentowania składanego; 2) oprocentowania prostego.

17. Wartość początkowa renty o 20 ratach tworzących ciąg arytmetyczny o różnicy 50 wynosi 8300. Jeśli i = 4%, ile wynosi pierwsza rata?

docsity.com

komentarze (0)
Brak komentarzy
Bądź autorem pierwszego komentarza!