








Studiuj dzięki licznym zasobom udostępnionym na Docsity
Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium
Przygotuj się do egzaminów
Studiuj dzięki licznym zasobom udostępnionym na Docsity
Otrzymaj punkty, aby pobrać
Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium
Społeczność
Odkryj najlepsze uniwersytety w twoim kraju, według użytkowników Docsity
Bezpłatne poradniki
Pobierz bezpłatnie nasze przewodniki na temat technik studiowania, metod panowania nad stresem, wskazówki do przygotowania do prac magisterskich opracowane przez wykładowców Docsity
Artykuł opublikowany: POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS
Typologia: Publikacje
1 / 14
Ta strona nie jest widoczna w podglądzie
Nie przegap ważnych części!
P O Z N A N U N I V E R S I T Y O F T E C H N O L O G Y A C A D E M I C J O U R N A L S No 94 Electrical Engineering 2018
DOI 10.21008/j.1897-0737.2018.94.
ANALIZA TECHNICZNO-EKONOMICZNA BUDOWY MORSKIEJ FARMY WIATROWEJ W WARUNKACH POLSKI
W dobie intensywnego rozwoju energetyki wykorzystującej źródła odnawialne, waż- nym zagadnieniem jest poszukiwanie takich lokalizacji, szczególnie w przypadku źródeł niestabilnych takich jak farny wiatrowe, w których warunki generacyjne (meteorolo- giczne) będą jak najstabilniejsze. Jednym z rozwiązań może być instalacji elektrowni wiatrowych na morzu. W artykule przeprowadzono analizę techniczno-ekonomiczną budowy morskiej far- my wiatrowej ( offshore) w warunkach Polski. Ponadto opisano specyfikę morskiej ener- getyki wiatrowej. Przedstawione zostały najważniejsze aspekty techniczne związane z morskimi farmami wiatrowymi, porównano również elektrownie morskie z lądowymi. Przedstawiono również perspektywy rozwoju morskiej energetyki wiatrowej w Polsce, opisano jej aktualną sytuację w tym kraju i na tej podstawie obliczono szacunkowy koszt wybudowania morskiej farmy wiatrowej na terenie polskiego obszaru morskiego.
SŁOWA KLUCZOWE: morskie farmy wiatrowe, analiza techniczno-ekonomiczna, średnie dobowe prędkości wiatru, efektywność energetyczna, opłacalność inwestycji.
Polski system energetyczny oparty jest głównie na wykorzystaniu paliw ko- palnych takich jak węgiel kamienny, węgiel brunatny, ropa naftowa czy gaz ziemny. Ich popularność spowodowana jest niską ceną, ogólnodostępnością surowca, a także jego wysoką wartością opałową i dobrze opanowaną technolo- gią wydobywania [2]. W najbliższej przyszłości wiele bloków energetycznych zostanie wyłączonych z obiegu, zapotrzebowanie na energię elektryczną stale będzie wzrastało, przy jednoczesnym wyczerpywaniu się złóż paliw kopalnych. Te wszystkie czynniki powodują, że niezbędne jest poszukiwanie alternatywy dla energetyki konwencjonalnej [1, 3]. W związku z brakiem akceptacji spo- łecznej dla budowy elektrowni jądrowych, rozwiązaniem wydaje się być energe- tyka oparta na odnawialnych źródłach energii. Ponadto zobowiązania unijne dotyczące zwiększenia udziału energii wytworzonej z OZE oraz ograniczenia
74 Arkadiusz Dobrzycki, Grzegorz Wodnicki
emisyjności szkodliwych substancji są kolejnym argumentem przemawiającym za tą technologią [5]. Morska energetyka wiatrowa ( offshore ) jest jednym z najprężniej rozwijają- cych się sektorów energetycznych w Europie. Polska dysponuje ogromnym po- tencjałem dla rozwoju morskiej energetyki wiatrowej ze względu na długość linii brzegowej, a także posiadanie znacznej powierzchni morza terytorialnego. Warunki wietrzności w Polsce w strefie przybrzeżnej są wybitnie korzystne, a na obszarze otwartego Morza Bałtyckiego są jeszcze lepsze, ze względu na brak przeszkód utrudniających wykorzystanie wiejącego wiatru [2]. Inwestorzy chętnie finansują realizacje takich przedsięwzięć, przez co z roku na rok na Morzu Północnym oraz Bałtyckim powstaje coraz więcej farm tego typu. Warunki atmosferyczne panujące na polskich obszarach morskich są rów- nie dobre jak te występujące na terenie Niemiec, gdzie znajduje się kilka parków wiatrowych typu offshore, w związku z czym jest to doskonałe rozwiązanie po- zwalające zwiększyć udział OZE w polskim systemie elektroenergetycznym. Koszty budowy morskich elektrowni wiatrowych są dużo wyższe od ich odpo- wiedników lądowych, jednakże jest to inwestycja dużo efektywniejsza, ze względu na większą stabilność w dostawach surowca, większą siłą wiatru, a także brakiem ograniczeń technologicznych [9].
Elektrownie wiatrowe budowane na morzu, nie różnią się zasadniczo w bu- dowie oraz zasadzie działania od ich lądowym odpowiedników. Najczęściej są to trzypłatowe turbiny o poziomej osi obrotu z gondolą osadzoną na wieży. Wir- nik turbiny konwertuje energię wiatru na energię mechaniczną za pomocą wału. Przekładnia zwiększa prędkość obrotową, napędzając generator, w którym na- stępuje konwersja energii mechanicznej na elektryczną, która następnie liniami kablowymi wędruje do sieci elektroenergetycznej. W zależności od rodzaju tur- biny, pracują one najczęściej w zakresie prędkości (5÷25 m/s). Po osiągnięciu wartości prędkości granicznej dolnej następuje załączenie elektrowni, ponieważ jest to wystarczająca prędkość do wprawienia łopat turbiny w ruch. W przypad- ku przekroczenia dopuszczalnego zakresu prędkości (w tym przypadku jest to 25 m/s), następuje automatyczne wyłączenie prądnic, a turbina wiatrowa zostaje ustawiona równolegle do kierunku wiatru, aby uniknąć ewentualnego zniszcze- nia [2, 5].
76 Arkadiusz Dobrzycki, Grzegorz Wodnicki
wykorzystania w płytkich wodach o głębokości 20-40 metrów są monopale. W zależności od ukształtowania dna morskiego oraz głębokości wody stosuje się również inne typy fundamentów: grawitacyjne, trójpodporowe, kratownicowe, a także fundamenty pływające, których nie ograniczają bariery związane z głę- bokością oraz strukturą dna dzięki czemu mogą być stosowane w obszarach, w których instalacja innych fundamentów nie byłaby możliwa [9, 13].
Pierwsza MFW o mocy 4,95 MW została wybudowana w Danii w 1991 roku. Obecnie państwami wiodącymi prym w sektorze offshore zarówno w Europie jak i na świecie są Niemcy oraz Wielka Brytania. Rynek europejski jest niekwe- stionowanym liderem tej technologii; ponad 90% mocy zainstalowanej pochodzi z elektrowni morskich na terenie Europy. Na koniec roku 2016 moc zainstalo- wana MFW w Europie wyniosła ponad 12,5 GW, z roku na rok odnotowywany jest systematyczny progres w rozwoju tej branży. Największymi producentami turbin wiatrowych w tym sektorze są Siemens oraz Vestas, a większość instala- cji powstaje na Morzu Północnym (ponad 9 GW mocy) [11]. Prawdopodobnie w 2020 roku całkowita moc zainstalowana pochodząca z sektora offshore będzie wynosiła prawie 25 GW, co jest wartością niemalże dwukrotnie wyższą niż obecnie. Optymistyczny scenariusz zakłada nawet po- ziom ponad 35 GW. W najbliższych latach w tych statystykach swój udział mo- że mieć również Polska [11].
Udostępnione przez Instytut Meteorologii i Gospodarki Wodnej w Gdyni średnie dobowe prędkości wiatru z okresu 01.01.2001-31.12.2014 zostały zmie- rzone w miejscowości Hel na wysokości 29 m n.p.m., a więc znacznie niższej od wysokości, na której umieszcza się wirnik przeciętnej turbiny wiatrowej. Średnia prędkość wiatru rośnie wraz ze wzrostem wysokości, zatem uzyskane wartości zostały przeliczone za pomocą równania [4, 6]:
EW EW
v v H
gdzie: ݒாௐ– prędkość wiatru [m/s] na żądanej wysokości ܪாௐ [m], ݒ – pręd- kość wiatru [m/s] zmierzona na danej wysokości ܪ[m], ߙ- współczynnik zależ- ny od klasy szorstkości oraz rodzaju terenu [-].
Stacja się na ter w której t 0,3). Dla scowienia Na pod czone śre kość z cał
Rys. 1. Śred
Histog szczególn energii, ja ślono hist wiał z okr jącą prędk 14 lat wia na poziom
Analiza te
meteorologi renie lasu, kt to wysokość wysokości H a gondoli prz dstawie uzys ednioroczne łego analizow
dnioroczne pręd
gram jest gra nych przedzi aka będzie m togram obra reśloną prędk kością jest w atr wiał z pr mie prawie 90
echniczno-eko
iczna, w któ tóry jest obs ć współczyn HEW przyjęto zeciętnej mor skanych obli prędkości w wanego okre
dkości wiatru w
aficznym zob iałach, będą możliwa do u azujący ilość kością. Zauw wartość z zak rędkością zna 0 dni rocznie
onomiczna bu
órej zostały p szarem należ nnika α wyn o wartość 140 rskiej turbiny czeń wykreś wiatru na ws esu wyniosła
w latach 2001-
brazowaniem cym pierwsz uzyskania w ć godzin w c ważono, że z kresu 4÷5 m ajdującą się e.
udowy morski
przeprowadz żącym do pi nosi 0,085÷ 0 m, gdyż je y wiatrowej. ślono rys. 1 p kazanej wys 6.1 [m/s].
014 przeliczone
m rozkładu p zym krokiem w przyszłości ciągu roku, p zdecydowani m/s. Przez po w tym przed
ej farmy …
zone pomiary iątej klasy sz 0,35 (przyjęt est to wysoko
przedstawiają sokości. Śred
e na wysokość
prędkości wia m do progn [4]. Na rys podczas któr ie najczęściej onad 1250 dn dziale, co da
77
y znajduje zorstkości, to wartość ość umiej-
ący przeli- dnia pręd-
140 m.n.p.m
atru w po- nozy ilości
. 2 wykre- rych wiatr j występu- ni w ciągu aje średnią
Rys. 3. Krz
Oś rzę o danej pr
gdzie: n (^) i – kich pom przestępn Warto ściej wyst
Funkcj ka może dziale cza rozkład pr mocy g(v)
Pole p możliwa d
Analiza te
zywa Weibulla
ędnych na ry rędkości, któ
ja gęstości m być generow asowym. Ma rędkości wia ) będącą iloc
powierzchni z do wytworze
echniczno-eko
dla k=2 i λ≈6, prz
ys. 3 przedst óre zostało ob
p
miarów z dan zternastoletn 3 [-] ce się nad kr prędkościami
mocy pozwal wana przez ając charakte atru Weibull czynem tych g v znajdującej s enia przez si
onomiczna bu
889 wraz z rozk zedziale czasow
awia prawdo bliczone zgo
i^ ^ i
n v N
nego przedzia niego okresu
rzywą Weibu i.
la na oszacow elektrownię erystyki mo a f(v) można dwóch funk P v f v się pod funk iłownię wiatr
udowy morski
kładem prędkoś wym
opodobieństw dnie z równa
ału wartości u czasowego,
ulla (przedzi
wanie ilości wiatrową w cy danej ele a uzyskać ch kcji [4].
kcją g(v) jest rową w rozp
ej farmy …
ści wiatru w ana
wo wystąpie aniem [4]:
[-], N – liczb , z uwzględn
iał 5÷9 m/s)
mocy oraz e w analizowan ektrowni P(v harakterystyk
t miarą mocy patrywanym
79
alizowanym
enia wiatru
ba wszyst- nieniem lat
są najczę-
energii, ja- nym prze- v), a także kę gęstości
y, jaka jest przedziale
80
czasowym wybraną t
gdzie: ܶ – w analizo Na rys nych turb
Warto wieniu ic energii el 5,0 MW,
A
m. Roczna pr turbinę jest o
E
Rys. 4. Ro
ści całek ob ch wyników lektrycznej p Siemens SW
1 0
E T a
E 2 (^) Ta
3 0
E T a
Arkadiusz Dob
rodukcja ene obliczana zgo
0
T a P v f
zin w ciągu r esie czasowy dstawiono po óżnych warto
ozkład gęstości
bliczono z w do równan przez poszcz WT-3,6 MW,
0
g v dv 8
0
g v dv 8
0
g v dv 8
brzycki, Grze
ergii, która m odnie z zależ
roku (po uwz ym T (^) a = 8765 orównanie fu ościach mocy
mocy g(v) wyb
wykorzystani nia 6 otrzym zególne turb Vestas 164-
8765,14 1,35
egorz Wodnick
mogłaby zos żnością [4, 6]
0
g v dv
zględnieniu 5,14[h]). unkcji gęstoś y znamionow
branych turbin w
iem metody mano wartośc biny, odpowi 8,0 MW:
532 11860, 7
ki
stać wytworz ]:
3 lat przestęp
ści mocy trze wej.
wiatrowych
trapezów. P ci rocznych iednio Game
zona przez
pnych
ech róż-
Po podsta- produkcji esa G128-
82 Arkadiusz Dobrzycki, Grzegorz Wodnicki
W najbliższej przyszłości planowane jest rozpoczęcie budowy MFW o mocy 1200 MW na wysokości miasta Łeba. Inwestycja byłaby zlokalizowana około 23km od linii brzegowej na głębokości wody 20-40m. Zgodnie z założeniami koszt wybudowania 1MW mocy takiej farmy wyniósłby około 3,361 mln euro, czyli 14,015 mln zł (przy aktualnym kursie € = 4,17zł [12]). W związku z tym koszt inwestycyjny całkowity wyniósłby: 14,015 mln zł / MW 1200 MW 16818 mln zł 16,8 mld zł Oszacowane wysokości kosztów inwestycyjnych zostały obliczone na pod- stawie danych z roku 2012, gdy poziom mocy zainstalowanej pochodzącej z MFW w Europie wynosił około 5-6 GW. Przewiduje się, że każde dwukrotne podwojenie ilości mocy skutkować będzie spadkiem wysokości nakładu inwe- stycyjnego o około 10% [7]. Obecnie struktura mocy zainstalowanej pochodzą- cej z elektrowni offshore wynosi ponad 12,5 GW, a więc jest to ponad dwukrot- nie wyższa wartość w porównaniu z rokiem 2012. W związku z tym w przepro- wadzonej analizie przyjęto optymistyczny scenariusz redukujący wartości kosz- tów inwestycyjnych o 10% oraz wybudowanie elektrowni na głębokości 20 -30 m, pozwalający zaoszczędzić pewną ilość pieniędzy. Zredukowany nakład inwestycyjny na chwilę obecną wyniósłby wówczas: 16,8 mld zł 0,9 15,12 mld zł
Na wysokość opłat eksploatacyjnych (operacyjnych) składają się koszty stałe (niezależne od wielkości produkcji) oraz zmienne (zależne od wielkości produk- cji). Wydatki o charakterze zmiennym związane są ze zmiennymi opłatami ser- wisowymi oraz kosztami bilansowania. Koszty stałe są znacznie większe i skła- da się na nie m.in.: utrzymanie oraz bieżące naprawy, ubezpieczenie, serwiso- wanie, dzierżawa terenu, a także potrzeby własne elektrowni. W 2011 roku cał- kowita wysokość rocznych opłat eksploatacyjnych stałych wynosiła około 317 000 zł/MW, natomiast części zmiennej ok. 24 zł/MWh. Ze względu na coraz większe zainteresowanie tą technologią na rynku europejskim w 2025 roku wielkość kosztów eksploatacyjnych zmiennych powinna zmaleć do poziomu około 235 tysięcy złotych/MW mocy. Wydatki o charakterze zmiennym powin- ny minimalnie wzrosnąć do poziomu około 27 zł/MWh [7]. W skład morskiej farmy wiatrowej o mocy 1200 MW musiałoby wchodzić 240 wybranych elektrowni o mocy 5 MW każda zdolnych wyprodukować pra- wie 12 GWh energii rocznie każda. W związku z tym cała farma, po uwzględnieniu strat mocy w transformato- rach (2%) oraz innych elementach instalacji elektrycznych (2%) mogłaby wy- produkować następującą ilość energii:
W prze cy 1200 M przez 25 oszacowa w przepro zmieniały waż dojd w kalkula Na rys inwestycj takiej farm
Rys.
Warto cyjnego. P budowy e nych latac ploatacyjn eksploatac Elektro ich pracy, lata inwes majątkow 470zł/MW kie siłown
Analiza te
eprowadzon MW odbywa lat do roku ane na podst owadzonej an y się w znacz dzie do nasy acjach. s.5 przedstaw i oraz hipote my [7]:
. 5 Orientacyjny
ścią początk Przez pierws elektrownia n ch całkowite nych. Całkow cji farmy zos ownie wiatro , po zakończ stycja nie ge we są iloczyn Wh [14] oraz nie. Ze wzgl
echniczno-eko
ej analizie ek ałaby się w 2045 włączn awie danych nalizie [7]. W znie mniejsz ycenia tą tec
wiono oszaco etyczne zysk
y rachunek kosz w
ową w przyp sze trzy lata, nie generuje e wydatki bę wita wysoko stała oszacow owe zaczyna zeniu etapu b eneruje żadny nem ceny r z ilości energ lędu na wzro
onomiczna bu
konomicznej latach 2018 nie. Wartośc h opublikow W późniejszy zym stopniu, chnologią i
owane sumar ki, jakie przyn
ztów i zysków wiatrową w Pols
padku kosztó , pozostają o żadnych ko ędą powięks ść wszystkic wana na pozi ają przynosi budowy, w zw ych przycho eferencyjnej gii elektryczn ost poziomu
udowy morski
j przyjęto, że -2020, a jej ci poszczegó wanych w rap ych latach op niż ma to m również zos
ryczne wyda niosłaby bud
generowanych sce
ów jest wyso one niezmien osztów ekspl szały się o w ch kosztów w iomie około ić zyski w m wiązku z czy dów. Szacun energii w nej wyproduk u inflacji prz
ej farmy …
e budowa far eksploatacja lnych kosztó porcie wyko płaty te na pe miejsce obec stało to uwz
atki w kolejn dowa oraz ek
przez morską f
okość nakładu nne, poniewa loatacyjnych wartość nakł w okresie bu 23,4 mld zło momencie ro ym przez pie nkowe roczn danym roku kowanej prz zyjęto, że wa
83
rmy o mo- a trwałaby ów zostały orzystanym ewno będą cnie ponie- zględnione
nych latach ksploatacja
farmę
u inwesty- aż podczas
. W kolej- adów eks- dowy oraz otych. ozpoczęcia erwsze trzy ne korzyści u (obecnie ez wszyst- artości cen
Analiza techniczno-ekonomiczna budowy morskiej farmy … 85
gię elektryczną, wzrost PKB, liczne przychody dla budżetu państwa, wypełnie- nie unijnych zobowiązań dotyczących zwiększenia wykorzystania OZE, a także stworzenie wielu tysięcy nowych miejsc pracy.
[1] Gałusza M., Paruch J., Odnawialne i niekonwencjonalne źródła energii. Poradnik,. Wydawnictwo Tarbonus, Kraków, 2008. [2] Jastrzębska G., Energia ze źródeł odnawialnych i jej wykorzystanie, Wydawnic- twa Komunikacji i Łączności, Warszawa, 2017. [3] Lewandowski W., Proekologiczne odnawialne źródła energii, Wydawnictwo Na- ukowo-Techniczne, Warszawa, 2007. [4] Lubośny Z., Farmy wiatrowe w systemie elektroenergetycznym, Wydawnictwo Naukowo-Techniczne, Warszawa, 2009. [5] Tytko R., Odnawialne źródła energii, Wydawnictwo OWG, Warszawa 2009 [6] Praca zbiorowa, ABB, Technical Application Papers No.13, Wind Power plants, https://library.e.abb.com/public/92faf0c1913f5651c1257937002f88e8/1SDC 12G0201.pdf, pobrano: grudzień 2017. [7] Praca zbiorowa, Fundacja na Rzecz Energetyki Zrównoważonej Grupy Doradczej SMDI, Analiza wymaganego poziomu wsparcia dla morskich elektrowni wiatro- wych w Polsce w perspektywie do 2025 roku, http://www.fnez.pl/upload/ File/Analiza%20systemu%20wsparcia%20OZE%20-%202012_FNEZ_GDSMDI. pdf, pobrano: styczeń 2018. [8] Praca zbiorowa, Polskie Stowarzyszenie Energetyki Wiatrowej, Stan energetyki wiatrowej w Polsce w 2016 roku, http://psew.pl/wp-content/uploads/2017/06/ Stan-energetyki-wiatrowej-w-Polsce-w-2016-r.pdf, pobrano: grudzień 2017. [9] Purta M., Marciniak T., Rozenbaum K., Rozwój morskiej energetyki Wiatrowej w Polsce. Perspektywy i ocena wpływu na lokalną gospodarkę, http://psew.pl/wp- content/uploads/2016/12/3d8a37f32172880c23a83f59cfe6a5c0.pdf, 2016, pobra- no: listopad 2017. [10] Stryjecki M., Mielniczuk K., Biegaj J., Przewodnik po procedurach lokalizacyj- nych i środowiskowych dla farm wiatrowych na polskich obszarach morskich, Fundacja na rzecz Energetyki Zrównoważonej, Warszawa 2011, http://www.fnez.pl/upload/File/Przewodnik%20wersja%20ostateczna_07_02_ 2.pdf, pobrano: grudzień 2017. [11] Wind Europe, The European Offshore Wind Industry. Key trends and statistics 2016, https://windeurope.org/wp-content/uploads/files/about-wind/statistics/ WindEurope-Annual-Offshore-Statistics-2016.pdf, pobrano: grudzień 2017. [12] Bankier.pl, Aktualny kurs euro, https://www.bankier.pl/waluty/kursy-walut/nbp/ EUR, skorzystano: 19 stycznia 2018. [13] MorskieFarmyWiatrowe.pl, http://morskiefarmywiatrowe.pl/, pod red. Funduszu na rzecz Energetyki Zrównoważonej (FNEZ), skorzystano: grudzień 2017. [14] Urząd Regulacji Energetyki, Ceny referencyjne energii pochodzącej z OZE, https://www.ure.gov.pl/pl/rynki-energii/energia-elektryczna/aukcje- oze/dokumenty/6539,Ceny-referencyjne.html, skorzystano: styczeń 2018.
86 Arkadiusz Dobrzycki, Grzegorz Wodnicki
TECHNICAL AND ECONOMIC ANALYSIS OF OFFSHORE WIND FARMS IN POLISH CIRCUMSTANCES
In the era of intensive development of energy using renewable sources, an important issue is the search for such locations, especially in the case of unstable sources such as wind parachutes, in which the generation (meteorological) conditions will be as stable as possible. One of the solutions may be installation of offshore wind farms. In the article, a technical and economic analysis of the construction of an offshore wind farm in Poland was carried out. In addition, the specificity of offshore wind energy is described. The most important technical aspects related to offshore wind farms were presented, and offshore and offshore power plants were also compared. The perspectives for the devel- opment of offshore wind energy in Poland were also presented, its current situation in Poland was described and on this basis the estimated cost of constructing an offshore wind farm in the Polish maritime area was calculated.
(Received: 02.02.2018, revised: 10.03.2018)