Docsity
Docsity

Przygotuj się do egzaminów
Przygotuj się do egzaminów

Studiuj dzięki licznym zasobom udostępnionym na Docsity


Otrzymaj punkty, aby pobrać
Otrzymaj punkty, aby pobrać

Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium


Informacje i wskazówki
Informacje i wskazówki

Fizjologia, kompendium - Notatki - Biologia - Część 1, Notatki z Biologia

Biologia: notatki z zakresu biologii przedstawiające kompedium z fizjologii; adaptacja organizmu do wysiłków długotrwałych, acetylokoenzym-A powstawanie, rola w przemianach. Część 1.

Typologia: Notatki

2012/2013

Załadowany 08.07.2013

hannibal00
hannibal00 🇵🇱

4.6

(143)

432 dokumenty

Podgląd częściowego tekstu

Pobierz Fizjologia, kompendium - Notatki - Biologia - Część 1 i więcej Notatki w PDF z Biologia tylko na Docsity!

Fizjologia - kompendium cz. 2

  1. Acetylokoenzym-A powstawanie, rola w przemianach. Acetylokoenzym A, acetylo-CoA, kwas octowy aktywny, octan aktywny, CH3-C(O)-S-CoA, tioester kwasu octowego i koenzymu A, ważny związek metaboliczny. Acetylokoenzym A powstaje bezpośrednio podczas katabolizmu kwasów tłuszczowych przez tzw. tiolizę, czyli rozpad łańcucha beta-ketokwasu czterowęglowego z udziałem grupy tiolowej koenzymu A lub podczas katabolizmu białek i cukrowców przez dekarboksylację oksydacyjną kwasu pirogronowego, katalizowaną przez kompleks enzymów zwanych dehydrogenezą pirogronianową. Pirogronian jest końcowym etapem spalania glukozy. W mitochondrium w wyniku spalania go powstaje Acetylo-Co-A. Bierze udział w cyklu Krebsa - z jednej cząsteczki Acetylo-Co-A zostaje odłączony CO2, a dwa wodory zostają przeniesione do NAD (dinukleotyd nikotynamidoadeninowy) , by później w trakcie spalania z tlenem wytworzyć 3 cząsteczki ATP. Jest przenośnikiem aktywowanej grupy acetylowej. Ponadto jest wykorzystywany w organizmach żywych do syntezy acetylocholiny, cholesterolu,hormonów steroidowych i kwasów tłuszczowych..
  2. Adaptacja organizmu do wysiłków długotrwałych. Wydolność fizyczna jest to zakres zdolności do wykonywania pracy mięśniowej bez zmęczenia i zaburzeń homeostazy. Oznacza odporność na zmęczenie oraz tolerancję na wysiłek fizyczny. Wydolność fizyczna zależy od sprawności, integracji, synchronizacji i koordynacji mechanizmów zapewniających podaż tlenu i składników energetycznych oraz odbiór metabolitów zmęczeniotwórczych oraz toksycznych. Zależy od zasobów energetycznych organizmu, głównie zawartości ATP, fosfokreatyny, glukozy i glikogenu. Podczas wysiłku fizycznego następuje najpierw adaptacja organów i układów narządów do wzmożonej czynności ruchowej:układ oddechowy: nasilenie wentylacji płuc przez zwiększenie częstości oddechów. Dzięki temu następuje pokrycie zapotrzebowania tkanek na tlen oraz usuniecie dwutlenku węgla.układ wydalniczy: zmniejszenie wydzielania moczu, w celu zatrzymania wody w ustroju. Wzrost stężenia kreatyniny, fosforanów i potasu w moczu, niekiedy białkomocz, spowodowany rozszerzeniem porów śródbłonka włośniczek kłębuszka nerkowego oraz zmniejszeniem resorpcji zwrotnej białka. W ustroju zatrzymany jest sód i chlor.układ krążenia: wzrost objętości krwi przetłaczanej przez serce (wzrost pojemności minutowej serca), wzrost ciśnienia krwi, wzrost ekstrakcji tlenu z krwi krążącej. Wzrost stężenia kwasu mlekowego we krwi. W normalnych warunkach mięśnie zużywają około 50 ml tlenu w ciągu minuty. Przepłynięcie 1 l krwi przez tkankę mięśniowa dostarcza tyle właśnie tlenu. Jednakże 1 l krwi zawiera

normalnie 200 ml tlenu, zatem mięśnie zabierając jedynie 50 ml, pozostawiają we krwi krążącej jeszcze 150 ml tlenu (mięśnie wykorzystały 25% tlenu z krwi). W czasie wysiłku przez mięśnie przepływa 20 l krwi w ciągu minuty. Ekstrakcja tlenu z krwi do mięśni wzrasta wówczas o 80- 90%, co jest mechanizmem adaptacyjnym do wysiłku fizycznego. Podczas wysiłku fizycznego pojemność minutowa serca wrasta 3-6- krotnie. Pojemność wyrzutowa serca może osiągnąć wartość 100 ml, a ilość skurczów serca może wrosnąć z około 70 do 200 na minutę. Zmniejsza się przepływ krwi przez trzewia, z wyjątkiem jelit.układ pokarmowy: zahamowanie skurczów głodowych i wydzielania soków trawiennych. Nie ulega zahamowaniu resorpcja mleczka pokarmowego z jelit do krwi.układ hormonalny: wzmożone wydzielanie wazopresyny, somatotropiny, lipotropiny, glukagonu, testosteronu, aldosteronu, tyroksyny, adrenaliny i noradrenaliny.układ nerwowy: początkowo dominacja układy współczulnego i pobudzenie kory mózgowej i układu siatkowatego. Potem następuje uruchomienie mechanizmów oszczędzania ustroju: hamowanie czynności ruchowych przez korę mózgową, dominacja układu przywspółczulnego.Wydolność fizyczna ulega zwiększeniu przez wielokrotne powtarzanie danego wysiłku, czyli przez trening. Za każdym razem wysiłek fizyczny pozostawia śladowe zmiany i następstwa w strukturze i czynnościach tkanek. Zsumowanie się tych następstw powoduje adaptację fizjologiczną i strukturalną do danego wysiłku; innymi słowy wykształca się efekt treningowy.

  1. Adaptacja układu krążenia do wysiłków krótkotrwałych. W momencie rozpoczęcia wysiłku wzrasta zapotrzebowanie na tlen w pracujących mięśniach. W tym momencie zostaje pobudzona czynność układu krążenia, przejawiająca się w zwiększeniu częstości skurczów serca HR i objętości wyrzutowej serca. W spoczynku HR wynosi ok. 70/min. Po rozpoczęciu wysiłku wzrasta natychmiast i wprost proporcjonalnie (liniowo) do jego intensywności, aż do osiągnięcia wartości maksymalnej, które u dzieci i młodzieży mogą przekroczyć nawet 200/min. Reguła stosowana to:HRmax = 220 wiek w latachWraz z intensywnością wysiłku wzrasta objętość wyrzutowa serca SV do pewnego momentu, a potem stabilizuje się. W spoczynku SV wynosi 70 ml, a w czasie wysiłku może wzrosnąć maksymalnego do 120 ml, z u wytrenowanych sportowców do 200 ml. Wzrasta również skurczowe ciśnienie krwi ze 120 mmHg do 200 a nawet do 250 mmHg. Podczas wysiłku nie zmienia się ciśnienie rozkurczowe. Wraz z rozpoczęciem wysiłku następuje przesunięcie ok. 10 15 % wody z osocza do płynu wewnątrzkomórkowego (mięśni szkieletowych) co powoduje zmniejszenie pH krwi. Również produkcja kwasu mlekowego w przemianach beztlenowych powoduje obniżenie pH