Studiuj dzięki licznym zasobom udostępnionym na Docsity
Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium
Przygotuj się do egzaminów
Studiuj dzięki licznym zasobom udostępnionym na Docsity
Otrzymaj punkty, aby pobrać
Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium
Społeczność
Odkryj najlepsze uniwersytety w twoim kraju, według użytkowników Docsity
Bezpłatne poradniki
Pobierz bezpłatnie nasze przewodniki na temat technik studiowania, metod panowania nad stresem, wskazówki do przygotowania do prac magisterskich opracowane przez wykładowców Docsity
Materiały pomocnicze do wykładów - opisy, wykresy, rysunki, część druga
Typologia: Publikacje
1 / 21
Projektowanie Nowych Leków Materiały pomocnicze do wykładów prof. dr hab. inż. Jan Mazerski
Błona komórkowa oddziela komórkę od środowiska zapewniając integralność komórki. Jednocześnie odpowiada ona za wymianę materii i informacji pomiędzy komórką a jej otoczeniem. Błony komórkowe spełniają 3 podstawowe funkcje:
Już proste metody analityczne pozwalają stwierdzić, że podstawowymi składnikami błony komórkowej są: lipidy białka cukry. Lipidy stanowią od 30 do 40% masy błony komórkowej. Podobna jest w błonie zawartość białka. Resztę masy błony stanowią cukry. Jest przy tym charakterystyczne, że cukry w błonie komórkowej są zawsze związane kowalencyjnie z lipidami (glikolipidy) lub białkami (glikoproteiny).
1.1.1 Lipidy błonowe Pod względem budowy chemicznej lipidy błonowe podzielić można na 3 grupy: fosfolipidy sfingolipidy sterole Fosfolipidy Pod względem chemicznym fosfolipidy są pochodnymi kwasu fosfatydylowego. Jego rdzeniem jest cząsteczka glicerolu zestryfikowana dwoma długołańcuchowymi kwasami tłuszczowymi i kwasem fosforowym. Kwas fosfatydylowy Fosfatydylocholina (lecytyna) W fosfolipidach błonowych jedna z grup hydroksylowych kwasu fosfatydylowego zestryfikowana jest jeszcze cząsteczką alkoholu. W zależności od rodzaju alkoholu mamy więc fosfatydylocholinę (lecytynę), fosfatydyloserynę itd. (rysunek poniżej). etanoloamina cholina seryna
fosforowy. Pierwszorzędowa grupa hydroksylowa sfingozyny tworzy wiązanie glikozydowe z cukrem. W cerebrozydach występuje z reguły jedna cząsteczka cukru, a w gangliozydach występuje kilka reszt cukrowych. H N OH H O O Ceramid H N O H O O H O OH OH O OH Cerebrozyd H N O H O O O O OH OH O OH H O OH O OH H O H O OH O H O Gangliozyd Sterole Cechą charakterystyczną steroli błonowych jest występowanie pojedynczej grupy hydroksylowej w pozycji 3 pierścienia A oraz obecność rozgałęzionego łańcucha alifatycznego na przeciwnym końcu cząsteczki. Zarówno w układzie pierścieniowym jak i w łańcuchu mogą występować wiązania podwójne. H O cholesterol H O ergosterol Sterole występują jedynie w błonach komórek eukariotycznych. Typowym sterolem błonowym w komórkach zwierzęcych jest cholesterol, a w komórkach grzybowych ergosterol. W błonach komórek roślinnych wystepuje wiele różnych steroli błonowych, czasami o bardzo dziwnej budowie. Typowym przedstawicielem jest sitosterol. Sterole błonowe mają przede wszystkim wpływ na właściwości fizykochemiczne błony takie jak płynność i wrażliwość na zmiany temperatury.
Jakościowy skład błon komórkowych poznano na przełomie XIX i XX w. Przez długi czas nie było jednak jasne jak rozmieszczone są poszczególne składniki błony, zwłaszcza białka i lipidy. Powstało wiele hipotez na temat budowy błon komórkowych. Wyjaśniały one jednak tylko pewne aspekty właściwości tego bardzo ważnego układu biologicznego. Dopiero dzięki pracom ze sztucznymi błonami lipidowymi zaproponowano w latach ’70 XX w. spójny model błony komórkowej. Obowiązujący do dzisiaj tzw. mozaikowy model błony zaproponowany został w 1972 przez Singera i Nicholsona. 1.2.1 Mozaikowy model płynnej błony Zgodnie z tym modelem podstawą błony komórkowej jest biwarstwa lipidowa. To ona zapewnia integralność środowiska wewnątrz komórki stanowiąc barierę dyfuzyjną. Biwarstwę lipidową można przy tym traktować jako dwuwymiarową ciecz: ruch w płaszczyźnie błony odbywa się w zasadzie bez specjalnych przeszkód. Jedynym ograniczeniem jest lepkość. W skład błony komórkowej wchodzą również białka błonowe. Związane one mogą być z biwarstwą lipidową na dwa różne sposoby. Tzw. białka powierzchniowe, nie pokazane na rysunku poniżej, wiążą się z błoną względnie luźno głównie poprzez oddziaływania elektrostatyczne i w pewnym zakresie poprzez wiązania wodorowe. Białka te można oddzielić od błony bez jej zniszczenia poprzez zmianę siły jonowej roztworu i/lub jego pH. Z błoną związane są również tzw. białka integralne, zielone na rysunku powyżej, których nie można wyizolować z błony bez zniszczenia jej struktury. Białka integralne mogą być jedynie zakotwiczone w błonie lub też przebijać ją na wylot. Te ostatnie, tzw. białka transbłonowe odpowiedzialne są za kontrolowany transport substancji do i z komórki oraz za przekazywanie informacji ze środowiska do wnętrza komórki. 1.2.2 Biwarstwa lipidowa Biwarstwa lipidowa jest strukturą supramolekularną rozdzielającą dwa roztwory wodne. Siłą zapewniającą jej stabilność termodynamiczną są oddziaływania hydrofobowe. Do powstania biwarstwy lipidowej niezbędna jest obecność lipidów posiadających długie lipofilowe łańcuchy
Białka integralne, niebieskie na rysunku powyżej, związane są z błoną bardzo silnymi oddziaływaniami hydrofobowymi. Niektóre z nich związane są tylko z jedną monowarstwą (lewa część rysunku). W tym przypadku oddziaływania hydrofobowe wynikać mogą z dwóch różnych przyczyn: jedna z domen białka posiada powierzchnię hydrofobową i dzięki temu lokuje się w lipofilowym środowisku łańcuchów kwasów tłuszczowych, z łańcuchem białkowym związana jest reszta kwasu tłuszczowego, której łańcuch alifatyczny zakotwiczony jest w strukturze biwarstwy. Znane są dwa typowe zakotwiczenia: poprzez kwas mirystylowy lub palmitylowy, rysunek poniżej. Poza białkami związanymi z jedną monowarstwą istnieją również białka przebijające błonę na wylot. Fragment łańcucha peptydowego znajdujący się w błonie ma zwykle postać jednej lub kilku -helis o bardzo charakterystycznej sekwencji. 1.2.3 Modyfikacje modelu mozaikowego Stworzony w latach ’70 XX w. mozaikowy model błony komórkowej wyjaśniał większość znanych wówczas faktów doświadczalnych. Od czasu jego powstania pojawiły się jednak nowe dane,
więc model ten jest systematycznie modyfikowany. Poniżej omówione zostaną dwie modyfikacje powszechnie akceptowane przez środowisko biofizyków. Asymetria składu lipidowego W większości błon komórkowych obserwujemy charakterystyczną asymetrię w składzie lipidowym obu monowarstw (rysunek powyżej). Warstwa zewnętrzna zawiera głównie cząsteczki fosfatydylocholiny i sfingomieliny oraz praktycznie wszystkie glikolipidy. Na przykład w erytrocytach ludzkich w warstwie tej występuje 80 % całej puli sfingomieliny i 75 % fosfatydylocholiny. Z kolei monowarstwa wewnętrzna bogata jest w cząsteczki fosfatydyloseryny, fosfatydylo- etanoloaminy i fosfatydyloinozytolu. Pozbawiona jest przy tym praktycznie glikolipidów. W erytrocytach zawiera ona 100 % ogólnej puli fosfatydyloseryny i ponad 70 % puli fosfatydyloetanoloaminy. Próbując wyjaśnić przyczynę tak silnej asymetrii składu lipidowego stwierdzono, że w błonach komórkowych istnieją specjalne białka, tzw. flipazy, które wykorzystując energie zawartą w ATP przenoszą lipidy z jednej monowarstwy do drugiej. Okazała się ponadto, że jednym z pierwszych wskaźników śmierci komórki jest pojawienie się w fosfatydyloseryny w monowarstwie zewnętrznej. Mikrodomeny lipidowe W latach ’90 XX w. w środowisku biofizyków błonowych ugruntowało się przekonanie, że biwarstwa tworząca błonę komórkową nie jest jednorodna nie tylko wertykalnie (patrz powyżej), ale że istnieją w niej również względnie trwałe niejednorodności lateralne (w płaszczyźnie błony). Niejednorodności te nazwano mikrodomenami. Najlepiej poznanym rodzajem mikrodomen są tzw. tratwy cholesterolowe. Charakteryzują się one ponadprzeciętną zawartością cholesterolu i sfingomieliny (mikrodomany sfingomielinowo- cholesterolowe). Są one odporne na działanie zimnych detergentów niejonowych takich jak Triton X. Preparaty błon komórkowych traktowane Tritonem X w temperaturze ok. 4C ulegają rozpadowi, ale nie całkowicie. Podczas ultrawirowania na powierzchni roztworu wodnego zaczyna się gromadzić faza
przez błony (naturalne i sztuczne) jest wielkość cząsteczki. Z mierzalną wydajnością dyfundują jedynie substancje małocząsteczkowe. Proste eksperymenty myślowe pozwalają przewidzieć jakie substancje mogą być najwydajniej transportowane na tej drodze. Substancje jonowe i silnie polarne będą miały trudności z pokonaniem bariery woda-błona. Z kolei substancje lipofilowe bardzo łatwo wnikną do błony i będą mogły się w niej poruszać, napotkają jednak duże trudności z pokonaniem bariery błona-woda i wyjściem z błony. Jedynie w przypadku substancje niejonowych o średniej polarności możemy się spodziewać względnie łatwego pokonania biwarstwy na drodze biernej dyfuzji. Jest bardzo charakterystyczne, że praktycznie wszystkie leki spełniają ten wymóg i są transportowane do wnętrza komórek na drodze dyfuzji. Zamieszczony obok wykres pokazuje wartości współczyn- ników przepuszczalności przez biwarstwę dla kilku wybranych substancji. Widać wyraźnie, że najłatwiej dyfunduje przez biwarstwę woda. Już małe polarne związki organiczne takie jak mocznik czy glicerol dyfundują ok. 1000 razy trudniej. Jeszcze trudniej dyfundują silnie polarne substancje odżywcze takie jak aminokwasy i cukry. Na wykresie pokazano, jak ważny dla dyfuzji transbłonowej jest brak grup zjonizowanych. Indol, stanowiący łańcuch boczny tryptofanu, dyfunduje ponad 1000-krotnie szybciej niż aminokwas posiadający charakter jonu obojnaczego. Skrajnie trudno dyfundują silnie hydratowane proste jony nieorganiczne. Ich dyfuzja jest o ponad 9 rzędów słabsza niż dyfuzja wody i daje się w ogóle wykryć tylko dzięki zastosowaniu specjalnych technik, np. z zastosowaniem izotopów promieniotwórczych. W typowych pomiarach biofizycznych można spokojnie założyć, że jony takie praktycznie nie dyfundują poprzez biwarstwę. Charakterystyczne czasy dyfuzji Substancja Przez biwarstwę Przez warstwę wody Stosunek woda 0,5 ms 10 ns 104 małe nieelektrolity 0,5 s 10 ns 107 glukoza 50 s 10 ns 109 jony 14 godz. 10 ns 1012 Innym wskaźnikiem pozwalającym wyrobić sobie opinię o zdolności substancji do dyfuzji przez biwarstwę lipidową jest tzw. czas charakterystyczny dyfuzji (tabela powyżej). Wskaźnik ten pozwala porównać szybkość dyfuzji danej substancji w wodzie i poprzez biwarstwę. Widać, że nawet dyfuzja wody jest w biwarstwie o 4 rzędy wolniejsza niż w samej wodzie. W przypadku jonów nieorganicznych dyfuzja przez biwarstwę jest o 12 rzędów wielkości wolniejsza niż w wodzie.
2.1.2 Jonofory Praktyczna nieprzepuszczalność sztucznych błon lipidowych dla jonów nieorganicznych, a z drugiej strony istotna rola transportu tych jonów praktycznie we wszystkich typach komórek spowodowała ogromne zainteresowanie możliwością wywołania transportu jonów poprzez dodatek małocząsteczkowych związków chemicznych. Związki o takich właściwościach nazywamy jonoforami. Przenośnikowe Kanałowe I [mA] U [mV] I [mA] U [mV] Walinomycyna Gramicydyna Okazało się, że właściwości jonoforowe wykazuje wiele klas związków chemicznych poczynając od tak prostych jak kwasy karboksylowe i fenole a kończąc na antybiotykach i peptydach. Szczegółowe badania nad transport jonów przez sztuczne błony lipidowe wykazały, że istnieją dwa odmienne mechanizmy tego zjawiska. Różnice pomiędzy tymi mechanizmami są szczególnie wyraźnie widoczne na charakterystykach prądowo-napieciowych: wykresach zależności natężenia prądu płynącego przez błonę w funkcji przyłożonego do błony napięcia (rysunek powyżej). W przypadku jednego z tych mechanizmów, zwanego mechanizmem przenośnikowym, charakterystyki prądowo-napieciowe mają kształt sigmoidalny. Natężenie płynącego prądu zależy od przyłożonego napięcia jedynie w wąskim przedziale napięcia wokół wartości zerowej. Poza tym przedziałem prąd ma charakter prądu nasycenia. Natężenie prądu nasycenia zależy przy tym od stężenia jonoforu, a prawie nie zależy od stężenia jonów.
Kanał gramicydynowy ułatwia transport kationów, ale jego zdolność do rozróżniania pomiędzy poszczególnymi kationami jest dużo mniejsza niż w przypadku walinomycyny. 2.1.3 Prąd pojedynczego kanału Badając charakterystyki prądowo-napięciowe jonoforów kanałowych przy skrajnie niskich stężeniach jonoforu zaobserwowano bardzo ciekawe zjawisko: skokowe zmiany płynącego prądu, przy czym zarówno częstotliwość skoków jak i ich wysokość była niezależna od przyłożonego napięcia. Rejestrowane skoki prądu są przy tym rzędu pikoampera (10-12^ A). Rysunek poniżej pokazuje zmiany natężenia prądu płynącego przez biwarstwę w czasie. Nasuwała się prosta, ale obiecująca interpretacja tego zjawiska: obserwujemy prądy płynące przez pojedynczy kanał. Otwierało to bardzo ciekawe perspektywy badawcze: korzystając z makroskopowego układu pomiarowego, np. „czarnej” błony lipidowej, możemy badać zjawiska na poziomie molekularnym. Skrupulatne badania w wielu ośrodkach naukowych potwierdziły w pełni tą interpretację. 2.1.4 Preparaty białek transbłonowych Doświadczenie zdobyte podczas badań nad jonoforami otworzyło drogę do zbudowania kolejnego układu modelowego: naturalnych układów transportujących wbudowanych w sztuczne błony lipidowe. Aby zbudować taki model należało jednak najpierw opracować sposób pozyskania pojedynczego naturalnego układu transportującego z błony komórkowej. Pierwszy problem polegał na tym, że naturalne układu transportujące błon komórkowych okazały się białkami transbłonowymi lub ich kompleksami. Należało więc opracować taki sposób rozbicia struktury błony, aby białka transbłonowe nie utraciły swej natywnej struktury. Po wielu niepowodzeniach ustalono, że najlepszy sposób polega na zastosowaniu roztworu odpowiedniego detergentu. Cząsteczki detergentu nie tylko rozbijają strukturę błony, ale również opłaszczają lipofilowe fragmenty białek zapobiegając ich denaturacji. Takie kompleksy białko-detergent można również bezpiecznie poddać rozdziałowi chromatograficznemu w celu uzyskania pojedynczych białek.
2.1.5 Rekonstrukcja pompy błonowej Okazało się, że metodę detergentową można zastosować nie tylko do izolacji białek odpowiedzialnych za transport substancji zgodnie z gradientem stężeń, ale również do izolacji, oczyszczenia, a następnie rekonstrukcji białek zdolnych do transportu substancji wbrew gradientowi stężeń, czyli tzw. pomp błonowych. Aby zrekonstruować naturalny układ transportowy w sztucznej błonie lipidowej należy do roztworu oczyszczonego białka z detergentem dodać odpowiednich lipidów błonowych i całość poddać dializie. W miarę jak obniża się stężenie detergentu jego funkcje w opłaszczaniu białka przejmują lipidy błonowe. Dobierając odpowiednio warunki dializy można doprowadzić również do utworzenia lipidowych struktur supramolekularnych, np. pęcherzyków. Można też już po powstaniu pęcherzyków wytworzyć w poprzek ich błony gradient stężenia pożądanego jonu lub związku chemicznego i układ pomiarowy mamy gotowy. Jeżeli rekonstruujemy pompę błonową, to należy dostarczyć jeszcze odpowiednie źródło, np. ATP.
Poznanie poszczególnych układów transportowych w układach modelowych pozwoliło zrozumieć znaczenie i mechanizm działania transportu w błonach komórkowych. Przede wszystkim okazało się, że transport ten odbywa się na trzech drogach, jako: bierna dyfuzja, transport ułatwiony, oraz transport aktywny. 2.2.1 Bierna dyfuzja Znaczenie biernej dyfuzji w przypadku błon komórkowych jest bardzo ograniczone i dotyczy przede wszystkim ruchu wody i wynikającej z tego wrażliwości osmotycznej komórek. Bierna dyfuzja innych substancji ma raczej dla komórki znaczenie negatywne. Wynika to przede wszystkim z faktu, że ten rodzaj transportu nie podlega kontroli. Jednakże fakt występowania dyfuzji przez błonę komórkową ma duże znaczenie w medycynie: pozwala na wprowadzenie do wnętrza komórki leków. W trakcie ewolucji komórki wypracowały specjalne mechanizmy pozwalające na usuwanie z komórki substancji, które wniknęły do jej wnętrza korzystając z tej drogi transportu.
drugim z cytoplazmą komórki. Stwierdzono również, że w jednym ze stanów konformacyjnych we wnętrzu białka istnieją miejsca wiążące transportowaną substancję. Łącząc wszystkie powyższe obserwacje zaproponowano mechanizm transportu ułatwionego zilustrowany na schemacie obok. W stanie A przenośnik otwarty jest do roztworu, który ma być źródłem transportowanej substancji (może to być np. otoczenie komórki). Umożliwia to cząsteczkom substancji transportowanej związanie się z miejscami wiązania wewnątrz cząsteczki białka. Związanie się cząsteczek transportowanej substancji z miejscami wiążącymi wyzwala zmianę konformacyjną białka: przechodzi ono w stan B. W stanie tym kontakt ze środowiskiem zewnętrznym jest niemożliwy. Dostępne za to staje się wnętrze komórki. W stanie B zmianie ulega również konformacja miejsca wiążącego cząsteczkę transportowaną w taki sposób, że obniża się stała wiązania. W efekcie cząsteczka transportowana przechodzi do roztworu. Oddysocjowanie wszystkich (lub co najmniej większości) cząsteczek transportowanych jest sygnałem do kolejnej zmiany konformacyjnej: stan B przechodzi w stan A i proces się powtarza. Wydajność transportowa przenośników białkowych jest w komórce precyzyjnie regulowana. Wydaje się, że mechanizm regulacji polega na modyfikacji chemicznej wybranych miejsc w cząsteczce białka. Pomimo zgromadzenia wielu szczegółowych danych doświadczalnych nie powstała jeszcze ogólna teoria regulacji białek przenośnikowych. Transport kanałowy - regulacja Mechanizm działania błonowych kanałów białkowych jest stosunkowo prosty. Białka takie tworzą w błonie hydrofilowy kanał, przez który mniej lub bardziej swobodnie mogą dyfundować substancje o dostatecznie małej średnicy i odpowiednim ładunku elektrycznym.
Dużo ciekawszy jest problem selektywności i regulacji transportu przez kanały białkowe. Na rysunku powyżej pokazano 4 podstawowe mechanizmy regulacji (tzw. bramkowania) pracy kanału błonowego. Kanał bramkowany potencjałem błonowym W większości komórek występuje różnica potencjału elektrycznego po obydwu stronach błony komórkowej. Zjawisko to nazywamy polaryzacją błony. W określonych warunkach potencjał ten może zaniknąć, depolaryzacja błony, lub zmienić się na przeciwny, repolaryzacja. Zmiana polaryzacji błony może wywołać taką zmianę konformacji białka kanałowego, że kanał przechodzi ze stanu zamkniętego w otwarty lub odwrotnie. Kanał bramkowany ligandem zewnątrzkomórkowym Ten mechanizm regulacji jest powszechnie wykorzystywany do przekazywania do wnętrza komórki sygnałów pochodzących ze środowiska zewnętrznego. Związanie cząsteczki sygnałowej z miejscem receptorowym kanału prowadzi do zmian konformacyjnych wywołujących jego otwarcie. Charakterystyczne jest przy tym, że oddziaływanie cząsteczki sygnałowej z miejscem receptorowym jest odwracalne i ma charakter dynamiczny, równowagowy. Obniżenie stężenia powoduje oddysocjowanie cząsteczki sygnałowej i zamknięcie kanału. Kanał bramkowany ligandem wewnątrzkomórkowym Ten rodzaj regulacji pozwala na uruchomienie transportu określonych substancji w odpowiedzi na sygnał pochodzący z wnętrza komórki. Komórka może w ten sposób dostosować ruch substancji do swego stanu wewnętrznego i aktualnie przebiegających procesów. Kanał bramkowany naprężeniami mechanicznymi Ostatnio odkryto kanały błonowe regulowane naprężeniami mechanicznymi pojawiającymi się w błonie. Kanały takie współdziałają z układem znajdujących się bezpośrednio pod błoną komórkową włókien białkowych stanowiących element cytoszkieletu komórki. Wiele z tak regulowanych kanałów stanowi podstawowy element czujnikowy w receptorach dotyku oraz w receptorach informujących system nerwowy o położeniu i ruchu kończyn. Istnieją przesłanki, że również zmysł słuchu korzysta z tego typu kanałów. Powyżej zasygnalizowaliśmy tylko najbardziej ogólne mechanizmy regulacji transportu kanałowego. Jednakże każdy konkretny kanał błonowy posiada wiele indywidualnych cech charakterystycznych. 2.2.3 Transport aktywny Białka odpowiedzialne za transport ułatwiony, a zwłaszcza kanały białkowe, umożliwiają w zasadzie przepływ substancji w obie strony. Kierunek przepływu określony jest przez gradient stężenia (substancje obojętne) lub gradient elektrochemiczny (jony). Jak jednak dochodzi do wytworzenia i utrzymywania się przez długi czas gradientu na błonie? Przecież transport ułatwiony powinien w
W stanie A białko przenośnikowe otwarte jest do środowiska zewnętrznego. Wewnątrz białka znajdują się miejsca wiążące glukozę i jony sodu. Gdy miejsca wiążące glukozę zostaną obsadzone dochodzi do zmiany stanu konformacyjnego przenośnika. W nowym stanie konformacyjnym B białka otwiera się do wnętrza komórki, a miejsca wiążące tracą zdolność do wiązania sodu i glukozy. Po uwolnieniu transportowanych substancji białko powraca do stanu A i cykl może się powtórzyć. Ciekawy przykład wykorzystania transportu sprzężonego do przenoszenia glukozy nie tylko przez błonę komórkową, ale przez warstwę komórek napotkać można w ścianie jelita. W błonie komórek wyścielających jelito znajdują się białka zdolne do symportu glukoza - jony sodu. Przenośniki te zlokalizowane są w tej części błony komórkowej, która tworzy kosmki jelitowe. Dzięki ich działaniu glukoza przepływa do wnętrza komórek ściany jelita wbrew gradientowi stężeń. Jednak stężenie glukozy we wnętrzu komórki nie rośnie. Dzieje się tak, ponieważ w tej części błony komórkowej, która styka się z naczyniami krwionośnymi lub limfatycznymi znajdują się przenośniki błonowe zdolne do ułatwionego transportu glukozy zgodnie z gradientem jej stężenia. W efekcie, glukoza niejako przepływa przez komórki wyścielające jelito. Przepływ odbywa się z przestrzeni o niskim stężeniu glukozy (światło jelita), poprzez przestrzeń o dużym stężeniu glukozy (wnętrze komórki nabłonkowej), do przestrzeni o niskim stężeniu (płyn zewnątrzkomórkowy). Cały ten skomplikowany przepływ możliwy jest dzięki przepływowi jonów sodu zgodnie z gradientem elektrochemicznym. Pompy błonowe Co jednak dzieje się z jonami sodu, które napływają nieprzerwanym strumieniem do wnętrza komórek nabłonka? Aby komórki te mogły pracować nieprzerwanie jony sodu muszą być z nich usuwane. Funkcję tą spełniają pompy sodowo-potasowe napędzane energią hydrolizy ATP.
Prześledźmy działanie takiej pompy bardziej szczegółowo. Działanie pompy ma charakter procesu cyklicznego, można go więc je analizować od dowolnego punktu. My rozpoczniemy od stanu [1] w którym przestrzeń wewnętrzna białka przenoszącego kontaktuje się z cytozolem. W przestrzeni tej znajduje się miejsce zdolne do wiązania jonów sodu. Gdy miejsce to zostanie obsadzone dochodzi do niewielkiej zmiany konformacyjnej odsłaniającej miejsce fosforylacji. Miejsce to znajduje się na powierzchni pompy od strony cytozolu. Odsłonięte miejsce fosforylacji zostaje teraz ufosforylowane dzięki przeniesieniu grupy fosforanowej z ATP - wykorzystana została energia chemiczna [2]. Fosforylacja białka wywołuje powstanie naprężenia konformacyjnego, które relaksuje się doprowadzając do kompleksowej zmiany konformacji [3]. W tym stanie konformacyjnym wnętrze białka przenośnikowego jest połączone ze środowiskiem zewnętrznym. Zanika też powinowactwo do jonu sodu, który na drodze dyfuzji opuszcza wnętrze białka. Jednocześnie w innym miejscu tworzy się miejsce wiążące jon potasu. Obsadzenie tego miejsca jonem potasu prowadzi do niewielkiej, ale istotnej zmiany konformacyjnej [4]. W jej wyniku uruchomione zostaje centrum katalityczne, które hydrolizuje wiązanie fosfoestrowe i uwalnia cząsteczkę fosforanu nieorganicznego. Białko pozbawione grupy fosforanowej znajduje się z naprężonym stanie konformacyjnym [5]. Relaksacja tego naprężenia prowadzi do globalnej zmiany konformacyjnej [6]. W wyniku tej zmiany wnętrze białka otwiera się po stronie cytozolowej, zanika miejsce wiążące jon potasu i odtwarza się miejsce wiążące jon sodu. Oddyfundowanie jonu potasowego kończy cykl pracy pompy [1]. Należy zwrócić uwagę na kilka charakterystycznych cech tego mechanizmu. Przede wszystkim zachowanie się białka przenośnikowego nosi cechy mechaniczne: proces transportu związany jest ze zmianami geometrii białka. W dwóch przypadkach, po związaniu jonów sodu i potasu w ich miejscach wiążących, są to zmiany niewielkie, lokalne. To jeszcze mieści się w typowym zachowaniu biopolimeru. Jednakże w dwóch przypadkach, [2][3] oraz [5][6], zmiany dotyczą praktycznie całej makrocząsteczki. Istnieją przy tym bardzo silne przesłanki, że tym globalnym zmianom