Docsity
Docsity

Przygotuj się do egzaminów
Przygotuj się do egzaminów

Studiuj dzięki licznym zasobom udostępnionym na Docsity


Otrzymaj punkty, aby pobrać
Otrzymaj punkty, aby pobrać

Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium


Informacje i wskazówki
Informacje i wskazówki

Obróbka cieplna - Notatki - Materiałoznawstwo, Notatki z Inżynieria materiałowa

Inżynieria: notatki z dziedziny materiałoznawstwa dotyczące obróbki cieplnej.

Typologia: Notatki

2012/2013

Załadowany 15.04.2013

spartacus_80
spartacus_80 🇵🇱

4.5

(55)

350 dokumenty

Podgląd częściowego tekstu

Pobierz Obróbka cieplna - Notatki - Materiałoznawstwo i więcej Notatki w PDF z Inżynieria materiałowa tylko na Docsity! 1. Wstęp. Obróbka cieplna jest to zespół odpowiednio dobranych zabiegów cieplnych prowadzących do zmiany właściwości stali poprzez zmiany struktury w stanie stałym w wyniku zmian temperatury i czasu. Ze względu na czynniki wpływające na kształtowanie struktury oraz właściwości metali i stopów można wyróżnić następujące rodzaje obróbki cieplnej: • obróbkę cieplną zwykłą, • obróbkę cieplno-chemiczną, • obróbkę cieplno-mechaniczną (zwaną także obróbką cieplno-plastyczną), • obróbkę cieplno-magnetyczną. Klasyfikację obróbki cieplnej zwykłej przedstawiono na rys. 1. Każdy proces obróbki cieplnej składa się z operacji i zabiegów. Operacja obróbki cieplnej jest to część procesu technologicznego (np. hartowanie, wyżarzanie) wykonywana w sposób ciągły, przeważnie na jednym stanowisku roboczym, natomiast zabiegiem nazywamy część operacji (np. nagrzewanie, wygrzewanie, chłodzenie) rys. 2. Rys. 1. Klasyfikacja obróbki cieplnej zwykłej. Rys. 2. Schemat operacji obróbki cieplnej. Podstawowymi parametrami, które decydują o przemianach fazowych są: szybkość nagrzewania, temperatura wygrzewania, czas nagrzewania, wygrzewania i chłodzenia oraz szybkość chłodzenia w zależności od temperatury wygrzewania. Nagrzewanie i chłodzenie materiału może przebiegać w sposób ciągły lub stopniowy. Podczas nagrzewania stopniowego rozróżnia się: podgrzewanie - nagrzewanie do temperatury pośredniej i dogrzewanie - nagrzewanie do temperatury wygrzewania. Podobnie podczas chłodzenia stopniowego wyróżniamy pojęcia: podchładzanie - chłodzenie do temperatury pośredniej oraz wychładzanie - chłodzenie do temperatury końcowej. Chłodzenie powolne (w piecu, spokojnym powietrzu) nazywamy studzeniem, natomiast chłodzenie szybkie (w wodzie, oleju) nazywamy oziębianiem. Ochłodzenie i wytrzymanie materiału w temperaturze poniżej 0°C nazywamy wymrażaniem. 2. Przemiany fazowe podczas obróbki cieplnej. 2. .1.. Przemiana austenityczna. Podczas nagrzewania stali, powyżej temperatury Ac1, rozpoczyna się przemiana perlitu w austenit, nazywana przemianą austenityczną. W stalach podeutektoidalnych po przekroczeniu temperatury Ac3 rozpoczyna się przemiana ferrytu w austenit, a w stalach nadeutektoidalnych po osiągnięciu temperatury Accm- proces rozkładu cementytu. Przemiana austenityczna rozpoczyna się zarodkowaniem austenitu na granicach międzyfazowych ferryt - cementyt i ma charakter dyfuzyjny. Szybkość zachodzenia przemiany austenitycznej zależy głównie od stopnia przegrzania perlitu (ferrytu) powyżej temperatury Ac1, (Ac3) przy grzaniu izotermicznym lub od szybkości nagrzewania przy grzaniu ciągłym oraz od ogólnej powierzchni granic międzyfazowych ferryt-cementyt, tj. dyspersji perlitu. Przemianę tę można rozważać w trzech następujących po sobie etapach: • utworzenie austenitu niejednorodnego, • utworzenie austenitu jednorodnego, • rozrost ziaren austenitu. Bezpośrednio po zakończeniu przemiany austenitycznej otrzymany austenit jest niejednorodny i do pełnego wyrównania koncentracji węgla i innych pierwiastków stopowych konieczne jest dalsze wygrzewanie. Przemianie perlitu w austenit towarzyszy rozdrobnienie ziarna (rys.3), jednak dalszy wzrost 1 temperatury lub czasu austenityzowania sprzyja rozrostowi ziaren. Skłonność do rozrostu ziaren austenitu zależy w znacznym stopniu od rodzaju stali, które możemy podzielić na dwie grupy: • stale drobnoziarniste o małej skłonności do rozrostu ziaren austenitu w zakresie temperatur do 900-950°C, • stale gruboziarniste, w których rozrost ziaren austenitu następuje bezpośrednio po zakończeniu przemiany austenitycznej. Rys. 3. Schemat wpływu temperatury austenityzowania na wielkość ziarna austenitu w stalach drobno- i gruboziarnistych (DAD, DAG - wielkość ziarna austenitu w stali drobnoziarnistej i gruboziarnistej, DP - wielkość ziarna perlitu). Głównym czynnikiem hamującym rozrost ziaren austenitu są dyspersyjne cząstki obcych faz, uniemożliwiające migrację granic ziaren. Do stali charakteryzujących się małą skłonnością do rozrostu ziaren należą m.in. stale odtleniane za pomocą aluminium (powstają dyspersyjne cząstki Al2O3 i AlN) oraz tale nadeutektoidalne i stopowe zawierające trudno rozpuszczalne węgliki. Stale drobnoziarniste umożliwiają stosowanie szerszego zakresu temperatury austenityzowania podczas obróbki cieplnej oraz wyższej temperatury obróbki plastycznej na gorąco. Drobnoziarnista struktura austenitu pierwotnego wpływa na poprawę właściwości mechanicznych i eksploatacyjnych stali normalizowanych, hartowanych i ulepszanych cieplnie. 1.. Przemiany podczas chłodzenia Austenit jest fazą trwałą tylko w pewnym zakresie temperatur i po ochłodzeniu poniżej temperatury Ar, ulega przemianie perlitycznej, bainitycznej lub martenzytycznej. Dane dotyczące zależności struktury i właściwości stali od temperatury i czasu przemiany przechłodzonego austenitu zawierają wykresy CTP (czas - temperatura - przemiana). W zależności od sposobu chłodzenia dla różnych gatunków stali są opracowywane wykresy: • CTPi - przy chłodzeniu izotermicznym, • CTPc - przy chłodzeniu ciągłym (rys.4). Rys. 4. Wykres CTPi (a) i CTPc (b) dla niestopow ej stali podeutekto idalnej. Rozpoczęcie przemiany austenitu wymaga pewnego czasu zwanego „czasem inkubacji austenitu”, który jest potrzebny do przegrupowania atomów oraz powstania zarodków nowej fazy. Czas inkubacji austenitu przy chłodzeniu izotermicznym zależy przede wszystkim od temperatury i jest najdłuższy w temperaturze bezpośrednio poniżej temperatury A1. Wraz z obniżeniem temperatury czas trwałości przechłodzonego austenitu ulega skróceniu osiągając minimum w temperaturze 500-550°C. Poniżej temperatury 550°C czas inkubacji austenitu wydłuża się aż do osiągnięcia temperatury początku przemiany martenzytycznej. Rys. 5. Schemat przebiegu przemiany perlitycznej: a) tworzenie się płytek cementytu i ferrytu, b) zapoczątkowanie przemiany perlitycznej na granicach ziaren austenitu, c) wzrost perlitu. 2. .2.. Przemiana perlityczna. 2 Podział martenzytu ze względu na morfologię, przedstawiono na rys. 9. Rys. 9. Klasyfikacja struktur martenzytycznych w stalach. Rys. 10. Morfologia martenzytu w stalach węglowych: a) listwowy, b) płytkowy. Martenzyt płytkowy (rys.10b), którego powstawanie związane jest z dominowaniem ścinania przez bliźniakowanie. Płytki martenzytu mają kształt soczewek o bardziej lub mniej regularnej (w zależności od stopnia zbliźniaczenia) powierzchni oraz zróżnicowanych wymiarach. W martenzycie całkowicie zbliźniaczonym płaszczyzny ograniczające płytki są całkowicie gładkie, natomiast w częściowo zbliźniaczonym nieregularne. Poszczególne płytki martenzytu są oddzielone między sobą austenitem szczątkowym. Martenzyt płytkowy występuje w stalach wysokowęglowych oraz niektórych stalach stopowych. 2.. Przemiany podczas odpuszczania. Podczas wygrzewania w temperaturze niższej od A1 stali uprzednio zahartowanej zachodzą następujące przemiany: • rozkład martenzytu, • przemiana austenitu szczątkowego w fazę α, • wydzielanie węglika i cementytu w stalach węglowych oraz innych węglików w stalach stopowych, • koagulacja węglików wydzielonych we wcześniejszych stadiach odpuszczania. W zależności od temperatury możemy wyróżnić kilka stadiów odpuszczania, w których przeważa jedna z przemian (rys.11). Pierwsze stadium przebiega w zakresie temperatur 80-200°C. Z martenzytu wydziela się węgiel w postaci drobnodyspersyjnego węglika ε, co powoduje zmniejszenie tetragonalności martenzytu. Powyższym przemianom towarzyszy skurcz próbki. Struktura po odpuszczaniu składa się z martenzytu odpuszczonego, austenitu szczątkowego i wydzieleń węglika ε. Drugie stadium przebiega w zakresie temperatur 200-300°C. Przeważają tutaj procesy przemiany austenitu szczątkowego w martenzyt odpuszczony, co powoduje wydłużenie próbki. Struktura stali składa się z martenzytu odpuszczonego i węglika ε. W trzecim stadium odpuszczania (300-400°C) następuje całkowite wydzielenie się węgla z martenzytu, rozpuszczanie się węglika ε w osnowie i niezależne wydzielanie cementytu. W powyższym stadium odpuszczania następuje silny skurcz próbki. Struktura próbki składa się martenzytu odpuszczonego (roztworu α) i wydzieleń cementytu. Rys. 11. Wpływ temperatury odpuszczania na zmiany wydłużenia próbki. Powyżej temperatury 400°C rozpoczyna się czwarte stadium odpuszczania, w którym zachodzą procesy koagulacji cementytu, polegające na stopniowym rozpuszczaniu się mniejszych cząstek cementytu i wzroście większych. W temperaturze ok. 600°C następuje sferoidyzacja cementytu. Struktura składa się z wysokoodpuszczonego martenzytu (złożonego z bardzo drobnych kulistych cząstek cementytu w osnowie ferrytu). 3. Procesy obróbki cieplnej. Obróbka cieplna ma na celu zmianę właściwości poprzez zmianę struktury, lecz bez zmiany kształtu obrabianego przedmiotu. W zależności od parametrów obróbki cieplnej oraz zmian zachodzących w strukturze pod wpływem obróbki cieplnej wyróżnia się: wyżarzanie, hartowanie, odpuszczanie, przesycanie i starzenie. 2. .5.. Wyżarzanie. 5 Rys.12. Zakres temperatur wyżarzania stali. Przez wyżarzanie rozumie się zabiegi cieplne, których celem jest uzyskanie struktury w obrabianym materiale zbliżonej do stanu równowagi termodynamicznej. Wyżarzanie polega na nagrzaniu materiału do określonej temperatury, wygrzaniu w tej temperaturze i chłodzeniu z odpowiednią szybkością. Ze względu na temperaturę, w której wyżarzanie przebiega, dzieli się je na wyżarzanie: z przekrystalizowaniem i bez przekrystalizowania. 2. .5.. .1... Procesy wyżarzania bez przekrystalizowania. Wyżarzanie rekrystalizujące przeprowadza się po obróbce plastycznej na zimno. Polega na nagrzaniu materiału do temperatury wyższej od temperatury początku rekrystalizacji, wygrzaniu w tej temperaturze i chłodzeniu. Celem wyżarzania rekrystalizującego jest usunięcie skutków zgniotu i przywrócenie pierwotnych właściwości materiału. Temperaturę rekrystalizacji można w przybliżeniu określić: Tr F 0 B B(0,35-0,6)Tt [K] gdzie: Tr - temperatura rekrystalizacji, Tt - temperatura topnienia. Wyżarzanie odprężające (odprężanie) polega na nagrzaniu materiału do temperatury poniżej Ac1, najczęściej 600-650°C, wygrzaniu w tej temperaturze i powolnym studzeniu. Celem wyżarzania odprężającego jest zmniejszenie naprężeń własnych bez wyraźnych zmian struktury i właściwości uzyskanych w wyniku wcześniejszej obróbki, stosowane jest do odlewów staliwnych, elementów spawanych oraz utwardzonych przez odkształcenia plastyczne. Wyżarzanie stabilizujące przeprowadza się w temperaturze do 150°C i ma na celu zapewnienie niezmienności wymiarowej oraz zmniejszenie naprężeń własnych. Najczęściej jest stosowane do narzędzi, sprawdzianów, odlewów żeliwnych, walców hutniczych itp. Jeżeli wyżarzanie przebiega w temperaturze otoczenia w czasie od kilku miesięcy do kilku lat, to nosi nazwę sezonowanie. 2. .5.. .2... Procesy wyżarzania z przekrystalizowaniem. Wyżarzanie ujednorodniające (homogenizujące) polega na nagrzaniu materiału do temperatury 1000-1200°C (o ok.100-200°C niższej od temperatury solidusu), długotrwałym wygrzaniu w tej temperaturze aż do wyrównania składu chemicznego oraz powolnym chłodzeniu. Celem zabiegu jest zmniejszenie niejednorodności (mikrosegregacji) składu chemicznego. Wyżarzanie normalizujące (normalizowanie) polega na nagrzaniu do stanu austenitycznego, tzn. 30-50°C powyżej temperatury linii GSE (Ac3, Acm) i następnie studzeniu w powietrzu. Celem operacji jest uzyskanie jednorodnej struktury drobnoziarnistej, a przez to poprawa właściwości mechanicznych stali. Jest stosowane do niestopowych stali konstrukcyjnych i staliwa - często przed dalszą obróbką cieplną w celu ujednorodnienia struktury. Wyżarzanie zupełne polega na nagrzaniu stali, jak przy wyżarzaniu normalizującym i powolnym studzeniu (np. z piecem). Celem zabiegu jest zmniejszenie twardości, usunięcie naprężeń własnych, poprawa ciągliwości stali. Procesowi temu poddaje się zwykle stale stopowe, dla których szybkość chłodzenia w spokojnym powietrzu podczas normalizowania jest za duża i może prowadzić do zahartowania stali. Wyżarzanie izotermiczne jest odmianą wyżarzania zupełnego i polega na nagrzaniu stali o 30-50°C powyżej temperatury Ac3, Acm, wygrzaniu w tej temperaturze, szybkim chłodzeniu do temperatury zawartej pomiędzy temperaturą Ar1, a temperaturą najmniejszej trwałości przechłodzonego austenitu i izotermicznym wytrzymaniu w tej temperaturze aż do zakończenia przemiany perlitycznej. W wyniku wyżarzania izotermicznego uzyskuje się równomierne rozmieszczenie cementytu w perlicie, ziarna średniej wielkości, dobrą obrabialność oraz twardość w granicach 150 – 220 HB. Z tych względów proces ten jest zalecany dla stali stopowych do nawęglania i ulepszania, przeznaczonych na koła zębate, wałki wielowypustowe itp. 6 Wyżarzanie sferoidyzujące (zmiękczanie) polega na nagrzaniu stali do temperatury zbliżonej do Ac1 wygrzaniu w tej temperaturze i powolnym chłodzeniu. Wygrzewanie może się odbywać w temperaturze do 20°C powyżej lub poniżej temperatury Ac1. Najbardziej efektywne jest wygrzewanie wahadłowe wokół temperatury Ac1, trudne jednak do realizacji w warunkach przemysłowych. W wyniku operacji wyżarzania sferoidyzującego uzyskuje się strukturę cementytu kulkowego w osnowie ferrytycznej tzw. sferoidyt. Struktura taka odznacza się najmniejszą twardością, dobrą skrawalnością oraz podatnością na odkształcenia plastyczne w czasie obróbki plastycznej na zimno. 2. .6.. Hartowanie. Hartowanie polega na nagrzaniu stali do temperatury austenityzowania, krótkim wygrzaniu w tej temperaturze i oziębieniu z szybkością umożliwiającą uzyskanie struktury martenzytycznej lub bainitycznej. Podczas hartowania stali niestopowych oraz stali niskostopowych materiał nagrzewamy do temperatury 30-50°C powyżej linii GSK (rys.13). Natomiast stale wysokostopowe (nierdzewne, szybkotnące) nagrzewamy do temperatur znacznie wyższych (1100-1200°C) w celu rozpuszczenia się w austenicie węglików i maksymalnego nasycenia roztworu stałego pierwiastkami stopowymi. W zależności od sposobu chłodzenia wyróżnia się hartowanie zwykłe (ciągłe), stopniowe oraz z przemianą izotermiczną (rys.14). Rys.13.Fragment układu Fe-C z naniesionymi temperaturami hartowania i odpuszczania. Rys.14.Krzywe chłodzenia podczas hartowania: a) ciągłego, b) stopniowego, c) izotermicznego. Hartowanie zwykłe polega na ciągłym obniżaniu temperatury obrabianego elementu z prędkością większą od krytycznej w ośrodku o temperaturze niższej od temperatury początku przemiany martenzytycznej. Dobór ośrodka chłodzącego uzależniony jest od hartowanego materiału oraz rodzaju struktury, którą chcemy uzyskać po zakończeniu procesu. Stale węglowe chłodzimy najczęściej w wodzie lub roztworach soli, natomiast stale stopowe w oleju lub powietrzu (np. stale maraging). Hartowanie stopniowe polega na chłodzeniu obrabianego elementu w kąpieli o temperaturze wyższej od temperatury początku przemiany martenzytycznej, wytrzymaniu w tej temperaturze przez okres konieczny do wyrównania temperatury na powierzchni i w rdzeniu przedmiotu lecz nie dłużej niż czas trwałości austenitu w tej temperaturze i powolnym chłodzeniu do temperatury otoczenia. Dzięki wyrównaniu temperatury na powierzchni i w rdzeniu materiału oraz powolnemu chłodzeniu po wytrzymaniu izotermicznym w przekroju elementu zanikają naprężenia termiczne oraz zmniejsza się skłonność do pękania i paczenia elementów. Jako kąpieli hartowniczych używa się najczęściej stopionych soli azotanów i azotynów sodu oraz soli potasu, które zapewniają szybki odbiór ciepła od ochładzanych elementów. Hartowanie izotermiczne (bainityczne) przebiega podobnie jak hartowanie stopniowe, tzn. po austenityzowaniu stal ochładza się w kąpieli o temperaturze wyższej od Ms, zwykle w zakresie 250-400°C, wytrzymuje w tej temperaturze do czasu zakończenia przemiany bainitycznej i chłodzi w powietrzu. Uzyskana struktura bainityczna posiada dużą twardość (40-50 HRC), a zarazem większą ciągliwość i udarność niż struktura martenzytyczna. Ze względu na zasięg austenityzowania obrabianego cieplnie przedmiotu hartowanie dzielimy na: objętościowe i powierzchniowe. Hartowanie objętościowe występuje wtedy, gdy austenityzowanie obejmuje całą objętość obrabianego cieplnie przedmiotu, a grubość zahartowanej warstwy zależy wyłącznie od własności materiału i szybkości chłodzenia. Hartowanie powierzchniowe polega na szybkim nagrzaniu warstwy powierzchniowej 7