Docsity
Docsity

Przygotuj się do egzaminów
Przygotuj się do egzaminów

Studiuj dzięki licznym zasobom udostępnionym na Docsity


Otrzymaj punkty, aby pobrać
Otrzymaj punkty, aby pobrać

Zdobywaj punkty, pomagając innym studentom lub wykup je w ramach planu Premium


Informacje i wskazówki
Informacje i wskazówki

Obróbka cieplna stopów żelaza - Notatki - Materiałoznastwo - Część 1, Notatki z Materiały inżynieryjne

W notatkach omawiane zostają zagadnienia z materiałoznastwa: obróbka cieplna stopów żelaza.

Typologia: Notatki

2012/2013

Załadowany 14.03.2013

mellow_99
mellow_99 🇵🇱

4.3

(26)

170 dokumenty

Podgląd częściowego tekstu

Pobierz Obróbka cieplna stopów żelaza - Notatki - Materiałoznastwo - Część 1 i więcej Notatki w PDF z Materiały inżynieryjne tylko na Docsity!

keypi.republika.pl/prace/nom/obrobka.htm 1/

Obróbka cieplna stopów żelaza

Związek mikrostruktury z własnościami mechanicznymi stali

Własności wytrzymałościowe i technologiczne stali są związane z jej mikrostrukturą zależną w zasadniczy sposób od obróbki cieplnej, tj. od różnorodnych zabiegów cieplnych, którym stal podlegała. Wykorzystując fizykochemiczne zjawiska występujące przy ogrzewaniu i oziębianiu stali można doprowadzić do wytworzenia się w niej najbardziej pożądanych składników strukturalnych, nadających je określone własności wytrzymałościowe.

I tak np. w celu wykonania obróbki skrawaniem stal wyżarza się zmiękczająco lub normalizuje, w wyniku czego powstaje struktura ferrytyczno-perlityczna, odznaczająca się małą twardością i wytrzymałością, ale dość znaczną ciągliwością Własności takie ułatwiają wykonanie obróbki wiórowej, więc w tym przypadku są one pożądane w procesie wytwarzania elementu konstrukcyjnego.

Natomiast w gotowym wyrobie, podlegającym znacznym naprężeniom, struktura ferrytyczno-perlityczna często nie zapewnia wystarczającej wytrzymałości i twardości. W celu polepszenia tych własności, przy jednoczesnym uzyskaniu dobrej ciągliwości i udarności, stosuje się ulepszanie cieplne, polegające na hartowaniu i odpuszczaniu w odpowiednio wysokiej temperaturze, w wyniku czego powstaje struktura sorbityczna. Stal w stanie ulepszonym jest materiałem konstrukcyjnym znacznie bardziej wartościowym niż ta sama stal w stanie nieulepszonym. Dlatego jest regułą, że wysokojakościową stal konstrukcyjną, zwłaszcza stopową, należy stosować jedynie w stanie ulepszonym.

Z kolei wyroby podlegające ścieraniu (np. narzędzia) powinny odznaczać się bardzo dużą twardością. Wykorzystuje się wtedy wysoką twardość jaką odznacza się struktura martenzytyczna powstająca przy hartowaniu.

Obróbka cieplna zwykła jest to rodzaj obróbki cieplnej, w wyniku której uzyskuje się zmiany własności metali i stopów będące głównie funkcją temperatury i czasu.

Czasem jednak łączy się również zabiegi obróbki cieplnej z odkształcaniem-plastycznym, z działaniem pola magnetycznego lub też z działaniem chemicznym środowiska. Mamy wówczas do czynienia odpowiednio z obróbką cieplno-plastyczną, cieplno-magnetyczną lub cieplno-chemiczną.

Związek obróbki cieplnej z przemianami fazowymi

Aby do danego stopu można było stosować poszczególne rodzaje obróbki cieplnej, np. operacje hartowania i odpuszczania lub przesycania i starzenia, powinny się w nim dokonywać przemiany fazowe, tj. np. podczas nagrzewania stopu powinna zachodzić przemiany alotropowe lub powinna występować wyraźna zmiana rozpuszczalności pewnych jego składników.

Na podstawie wykresu równowagi fazowej danego układu można ustalić jak; rodzaj obróbki cieplnej można zastosować do danego stopu i w jakich zakresach temperatury należy tę obróbkę przeprowadzić.

W związku z tym proces obróbki cieplnej stali należy rozpatrywać, korzystając wykresu równowagi fazowej układu żelazo-cementyt (rys. 5.1). Temperatury równowagi faz w tym układzie oraz temperatury przemian (punkty krytyczne) przyjęto powszechnie oznaczać literą A z odpowiednim wskaźnikiem. Najniższa z tych

keypi.republika.pl/prace/nom/obrobka.htm 2/

temperatur A 1 odpowiada równowadze austenitu z ferrytem i cementytem (linia PSK). Temperatura A 2 jest temperaturą przemiany magnetycznej ferrytu (linia MO). Temperatura A 3 , wyznaczona przez punkty leżące na linii GS, jest temperaturą graniczną równowagi austenitu z ferrytem. Temperatura Acm (linia SE) to graniczna temperatura równowagi austenitu z cementytem wtórnym.

Aby odróżnić temperatury początku i końca przemian podczas nagrzewania od tychże temperatur podczas chłodzenia dodaje się do litery A wskaźnik c w przypadku nagrzewania lub wskaźnik rw przypadku chłodzenia (np. Ac1, Ar3).

Rys. 5.1. Fragment wykresu równowagi fazowej żelazo-cementyt

5.1. Podstawowe przemiany fazowe w stali związane z obróbką cieplną

Przemiany fazowe w stali są wynikiem tego, że wskutek zmiany warunków, np. temperatury, jeden stan staje się mniej trwały niż drugi. To właśnie jest przyczyną przemian zachodzących w stali. Należy zaznaczyć, że może w niej występować kilka podstawowych struktur, a istotą najważniejszych przemian jest właśnie przejście jednej struktury w drugą. Tymi podstawowymi strukturami są:

W procesach obróbki cieplnej stali występują następujące podstawowe przemiany

I. Przemiana ferrytu w austenit

Fea (C) ® Feg(C)

II. Przemiana austenitu w ferryt

Fe g(C) ® Fea (C)

III. Przemiana perlitu w austenit

(Fea (C) + Fe 3 C) ® Feg (C)

IV. Przemiana austenitu w struktury perlityczne (lub bainityczne)

keypi.republika.pl/prace/nom/obrobka.htm 4/

Zjawisko rozrostu jest procesem samorzutnym, gdyż jego następstwem jest zmniejszenie łącznej powierzchni ziarn (zmniejsza się energia powierzchniowa), wysoka temperatura zapewnia dostatecznie szybki przebieg tego procesu.

W praktyce rozróżnia się dwa typy stali (rys. 5.3):

stale wykazujące skłonność do rozrostu ziam austenitu, który zaczyna się po niewielkim przekroczeniu temperatury Ac1 � stale te nazywamy gruboziarnistymi; stale nie mające skłonności do rozrostu ziam austenitu bezpośrednio po przekroczeniu temperatury Ac1 W stalach tych ziarno zaczyna się rozrastać dopiero po nagrzaniu ich do temperatury ok. 1000°C.

Zbyt wysokie i długotrwałe wygrzewanie stali podczas austenityzowania powoduje więc rozrost ziarn austenitu. Z kolei wielkość ziarna perlitu zależy od wyjściowej wielkości ziarna austenitu, z którego powstał perlit. Im większe są ziarna austenitu, tym większe tworzą się na ogół ziarna perlitu. Powstanie struktury gruboziarnistej jest niepożądane, gdyż stal taka

charakteryzuje się niższą wytrzymałością i udamością. Dlatego w czasie austenityzowania stali skłonnych do rozrostu ziarna należy ściśle przestrzegać określonych temperatury i czasu grzania.

Rys. 5.3. Schemat przedstawiający zmianę wielkości ziarna austenitu w czasie nagrzewania stali gruboziarnistej (krzywa a) i stali drobnoziarnistej (krzywa b)

Rys. 5.4. Stal węglowa o zawartości 0,45%C w stanie wyżarzonym o strukturze gruboziarnistej. Widoczne ciemne pola perlitu i jasne ziarna ferrytu. 5% Nital. Powiększ.100x

keypi.republika.pl/prace/nom/obrobka.htm 5/

Rys. 5.5. Stal węglowa o zawartości 0,45% C w stanie normalizowanym. Struktura drobnoziarnista. Traw. 5% Nitalem. Powiększ. 100x

Na rysunku 5.4 przedstawiona jest struktura stali węglowej podeutektoidalnej o zawartości 0,45% C w stanie przegrzanym, charakteryzującej się dużym ziarnem. Z kolei na rys. 5.5 widoczna jest struktura drobnoziarnista tej samej stali w stanie normalizowanym, tj. po nagrzewaniu do temperatury tylko ok. 30 ¸ 50 oC powyżej temperatury A 3 i chłodzeniu na powietrzu.

5.1.3. Przemiana austenitu w struktury perlityczne

Przemiana austenitu w struktury perlityczne (lub bainityczne) przebiega w temperaturze niższej niż A 1. Rozpoczyna się przy pewnym przechłodzeniu, gdy energia swobodna mieszaniny ferrytu z cementytem (perlitu) stanie się mniejsza od energii swobodnej austenitu.

Im niższa jest temperatura przemiany, tj. im większe przechłodzenie, tym większa jest różnica swobodnych energii i tym szybciej przebiega przemiana.

Z drugiej strony przemianie austenitu w perlit towarzyszy dyfuzja połączona z przegrupowaniem węgla, gdyż powstają dwie fazy znacznie różniące się zawartością węgla od austenitu. Ferryt zawiera bardzo mało węgla (maks. ok. 0,02%). cementyt zaś 6,67% węgla. Szybkość dyfuzji raptownie zmniejsza się przy obniżaniu temperatury, w związku z tym wzrost przechłodzenia powoduje zmniejszenie szybkości przebiegu przemiany.

W wyniku łącznego działania obu czynników szybkość przemiany początkowo zwiększa się ze wzrostem przechłodzenia, osiągając przy pewnej wartości przechłodzenia swe maksimum, a potem zmniejsza się.

Wykresy CTP

Przebieg procesu przemiany przechłodzonego austenitu wygodnie jest rozpatrywać na podstawie wykresów rozpadu austenitu, zwanych wykresami CTP (czas, temperatura, przemiana). Na wykresach tych naniesione są linie początku i końca

przemian we współrzędnych logarytm czasu-temperatura, przy czym rozróżnia się wykresy dla przemian austenitu w warunkach izotermicznych oznaczane CTPi oraz wykresy przemian austenitu w warunkach chłodzenia ciągłego, oznaczane CTPc. Na rysunku 4.6 podany jest schematycznie wykres CTP; dla stali węglowej eutektoidalnej. Trwałość przechłodzonego austenitu zmienia się w zależności od temperatury. Dla stali eutektoidalnej przy małych przechłodzeniach trwałość austenitu jest duża, następnie zmniejsza się i minimum występuje w temperaturze ok. 500°C, po czym znowu trwałość austenitu jest coraz większa aż do temperatury ok. 200°C, poniżej której przechłodzony austenit przechodzi w martenzyt.

Wykresy CTPi, buduje się wykorzystując krzywe kinetyczne przemiany austenitu, dla określonego stopnia

keypi.republika.pl/prace/nom/obrobka.htm 7/

Rys. 5.7. Wykres izotermicznych przemian austenitu dla stali eutektoidalnej; A - austenit, P - perlit, B - bainit, M �martenzyt

Stopień dyspersji perlitu wpływa na jego własności mechaniczne, tak np. twardość perlitu grubego w przypadku stali węglowej eutektoidalnej wynosi ok. 15 HRC, a perlitu bardzo drobnego dochodzi do 40 HRC (rys. 5.7).

W stalach podeutektoidalnych i nadeutektoidalnych przemiana perlityczna poprzedzona jest innymi przemianami strukturalnymi. W stali podeutektoidalnej z austenitu tworzy się najpierw ferryt, a w stalach nadeutektoidalnych przed rozpoczęciem przemiany perlitycznej wydziela się z austenitu cementyt (rys. 5.8). Dalsza przemiana perlityczna przebiega podobnie, jak w stali eutektoidalnej. Na rysunku 5.9 podany jest schematycznie wykres CTPi, dla stali węglowej podeutektoidalnej, na którym naniesiono dodatkowe linie przemian izotermicznych (dla różnych temperatur) prowadzących do powstania odpowiednich struktur. Z kolei rys. 5.10 przedstawia wykres dla tej samej stali ale przy chłodzeniu ciągłym (CTPc); zaznaczono również linie chłodzenia prowadzące do powstania różnych struktur.

Rys. 5.8. Wykres CTP dla stali: a) podeutektoidalnej, b) nadeutektoidalnej

Obniżenie temperatury rozpadu austenitu powoduje, że przemiana zachodzi w warunkach utrudnionej dyfuzji. Struktura produktów rozpadu austenitu w takich linkach nosi nazwę bainitu. W przypadku stali eutektoidalnych przemiana austenitu w bainit zachodzi w temperaturze ok. 500-200°C (rys. 5.6, 5.7), przy

keypi.republika.pl/prace/nom/obrobka.htm 8/

czym rozróżnia się bainit dolny o strukturze drobnoiglastej i jeszcze większym stopniu dyspersji wydzieleń cementytu. W odróżnieniu od perlitu ferryt w bainicie zawiera znacznie więcej węgla (tym więcej, im niższa była temperatura przemiany). Bainit górny wykazuje twardość ok. 45 HRC, natomiast twardość bainitu dolnego wynosi ok. 55 HRC. Tę stosunkowo dużą twardość tłumaczy się znaczną dyspersją struktury oraz zniekształceniem sieci.

Rys. 5.10. Wykres przemian austenitu w warunkach chłodzenia ciągłego (CTPc) dla stali podeutektoidalnych

Przykładowe wykresy CTPi I CTPc dla stali 45 (węglowa konstrukcyjna wyższej jakości) przedstawiono odpowiednio na rysunkach 5.11 i 5.12.

Rys. 5.11. Wykres CTPi stali 45

keypi.republika.pl/prace/nom/obrobka.htm 10/

Warunkiem przebiegu przemiany martenzytycznej jest ciągłe obniżanie temperatury w zakresie od Ms do Mf.. Przy stałej temperaturze powstawanie martenzytu ustaje. Ponadto przemiana austenitu w martenzyt może zajść dopiero przy odpowiednio dużej szybkości chłod

zenia. Najmniejsza szybkość chłodzenia, w wyniku której austenit przechodzi wyłącznie w martenzyt, nazywana jest krytyczną szybkością chłodzenia Vk (rys. 5.15).

Rys. 5.13. Położenie punktów początku Ms i końca Mf przemiany martenzytycznej w zależności od zawartości węgla

Rys. 5.14. Typowa struktura martenzytu. Stal 35 zahartowana w wodzie. Traw. 2% Nitalem, x

Rys. 5.15. Przebieg chłodzenia stali z różną szybkością na tle wykresu CTP;